Vol. 77 No. 2 (2022)
Research Articles

The economic value of ecosystem services of irrigation: a choice experiment for the monetary evaluation of irrigation canals and fontanili in Lombardy

Myriam Ruberto
Department of Economic, Engineering, Society and Business Organization (DEIM) – Tuscia University
Giacomo Branca
Department of Economic, Engineering, Society and Business Organization (DEIM) – Tuscia University
Stefania Troiano
Department of Economics and Statistics – University of Udine
Raffaella Zucaro
CREA – Research Centre for Agricultural Policies and Bioeconomy

Published 2022-08-04


  • irrigation,
  • water framework directive,
  • ecosystem services,
  • choice experiment,
  • economic analysis

How to Cite

Ruberto, M., Branca, G., Troiano, S., & Zucaro, R. (2022). The economic value of ecosystem services of irrigation: a choice experiment for the monetary evaluation of irrigation canals and fontanili in Lombardy. Italian Review of Agricultural Economics, 77(2), 27–39. https://doi.org/10.36253/rea-13404


The Water Framework Directive (WFD) has introduced economic principles for water resource management, including the environmental cost recovery on the basis of the polluter pays principle (PPP). Agriculture, as a potential driver of pressures on water bodies, can produce environmental costs. However, the use of water in agriculture can produce ecosystem services (ES), especially through the aquatic systems of the traditional irrigation agro-ecosystem. This work presents a case study of monetary estimation of some ES of aquatic ecosystems linked to irrigation, i.e. irrigation canals and fontanili in Lombardy (Italy). Through the choice experiment method, we obtained positive values of willingness to pay for the highest levels of ES analysed. This has an implication in the context of the economic analysis of water uses and the decision-making process within the interventions planning of irrigation efficiency improvement.


Download data is not yet available.


Metrics Loading ...


  1. Aizaki I., Sato K., Osari H. (2006). Contingent valuation approach in measuring the multifunctionality of agriculture and rural areas in Japan. Paddy Water Environments, 4: 217-222. DOI: 10.1007/s10333-006-0052-8.
  2. Aspe C., Gilles A., Jacque M. (2016). Irrigation canals as tools for climate change adaptation and fish biodiversity management in Southern France. Regional Environmental Change, 16(7): 1975-1984. DOI: https://doi.org/10.1007/s10113-014-0695-8
  3. Balderacchi M., Perego A., Lazzari G., Trevisan M., Munoz-Carpena R., Acutis M., Laini A., Giussani A., Sanna M., Kane D. (2016). Avoiding social traps in the ecosystem stewardship: The Italian Fontanile lowland spring. Science of The Total Environment, 539: 526-535. DOI: http://dx.doi.org/10.1016/j.scitotenv.2015.09.029
  4. Bischetti G., Fumagalli N., Gomarasca S., Pillitter T., Piantanida E., Senes G., Negri G., Marziali L., Toccolini A. (2012). Tutela e valorizzazione dei fontanili del territorio lombardo. In Progetto FonTe; Quaderni della Ricerca n. 144; Regione Lombardia, D.G. Agricoltura: Milano, Italy, 2012;
  5. Bouwer H. (1987). Effect of irrigated agriculture on groundwater. Journal of Irrigation and Drainage Engineering, 113(1): 4-15. DOI: https://doi.org/10.1061/%28ASCE%290733-9437%281987%29113%3A1%284%29
  6. Brown Jr E.G., Laird J., Cowin M.W. (2012). A Proposed Methodology for Quantifying the Efficiency of Agricultural Water Use. State of California, The Natural Resources Agency DEPARTMENT OF WATER RESOURCES, Division of Statewide Integrated Water Management Water Use and Efficiency Branch
  7. Castaldelli G., Soana E., Racchetti E., Vincenzi F., Fano E.A., Bartoli M. (2015). Vegetated canals mitigate nitrogen surplus in agricultural watersheds. Agriculture, Ecosystems & Environment, 212: 253-262. DOI: https://doi.org/10.1016/j.agee.2015.07.009
  8. Cesari de Maria S., Rienzner M., Facchi A., Chiaradia E.A., Romani M., Gandolfi C. (2016). Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district. Agricultural Water Management, 171: 108-119. DOI: http://dx.doi.org/10.1016/j.agwat.2016.03.018
  9. Chen S., Wu W., Hu K., Li W. (2010). The effects of land use change and irrigation water resource on nitrate contamination in shallow groundwater at county scale. Ecological Complexity, 7(2): 131-138. DOI: http://dx.doi.org/10.1016%2Fj.ecocom.2010.03.003
  10. Dagès C., Voltz M., Bsaibes A., Prévot L., Huttel O., Louchart X., Garnier F., Negro S. (2009). Estimating the role of a ditch network in groundwater recharge in a Mediterranean catchment using a water balance approach. Journal of Hydrology, 375(3-4): 498-512. DOI: https://doi.org/10.1016/j.jhydrol.2009.07.002
  11. Defra (2002). Enhancing the biodiversity value of arable drainage ditches – a feasibility study. Project report.
  12. Doherty E., Murphy G., Hynes S., Buckley C. (2014). Valuing ecosystem services across water bodies: Results from a discrete choice experiment. Ecosystem Services, 7: 89-97. DOI: https://doi.org/10.1016/j.ecoser.2013.09.003
  13. Fasola M., Ruiz X. (1996). The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region. Colonial Waterbirds, 19, Special Publication 1: Ecology, Conservation, and Management of Colonial Waterbirds in the Mediterranean Region (1996): 122-128. DOI: https://doi.org/10.2307/1521955
  14. Gandolfi C., Rienzner M., Ortuani B. (2006). Documento d5: rapporto sul modello falda-fontanili, Progetto TwoLe – Sottoprogetto TwoLe-B – Modello Falda-Fontanili, Istituto di Idraulica Agraria, Università degli Studi di Milano, Milano, 111 pp.
  15. Grafton R.Q., Williams J., Perry C.J., Mollec F., Ringler C., Steduto P., Udalls B., Wheelery S.A., Wang Y., Garrick D., Allen R.G. (2018). The paradox of irrigation efficiency. Science, 361(6404): 748-750. DOI: http://dx.doi.org/10.1126/science.aat9314
  16. Groenfeldt D. (2006). Multifunctionality of agricultural water: looking beyond food production and ecosystem services. Irrigation and Drainage: The Journal of the International Commission on Irrigation and Drainage, 55(1): 73-83. DOI: http://dx.doi.org/10.1002/ird.217
  17. Haines-Young R., Potschin M. (2010). The links between biodiversity, ecosystem services and human well-being. Ecosystem Ecology: a new synthesis, 1: 110-139. DOI: http://dx.doi.org/10.1017/CBO9780511750458.007
  18. Hasund K.P., Kataria M., Lagerkvist C.J. (2011). Valuing public goods of the agricultural landscape: a choice experiment using reference points to capture observable heterogeneity. Journal of Environmental Planning and Management, 54(1): 31-53. DOI: http://dx.doi.org/10.1080/09640568.2010.502753
  19. Hensher D.A., Rose J.M., Greene W.H. Applied Choice Analysis: A Primer; Cambridge University Press
  20. Herzon I., Helenius J. (2008). Agricultural drainage ditches, their biological importance and functioning. Biological conservation, 141(5): 1171-1183. DOI: https://doi.org/10.1016/j.biocon.2008.03.005
  21. Keller A.A. (1996). Integrated water resource systems: Theory and policy implications (Vol. 3). IWMI.
  22. Kendy E., Bredehoeft J.D. (2006). Transient effects of groundwater pumping and surface‐water‐irrigation returns on streamflow. Water resources research, 42(8). DOI: http://dx.doi.org/10.1029/2005WR004792
  23. Khan S.U., Khan I., Zhao M., Khan A.A., Ali M.A.S. (2019). Valuation of ecosystem services using choice experiment with preference heterogeneity: a benefit transfer analysis across inland river basin. Science of the Total Environment, 679: 126-135.
  24. Lancaster K. (1966). ‘A New Approach to Consumer Theory’, Journal of Political Economy, 84: 132-157
  25. López-Pomares A., López-Iborra G.M., Martín-Cantarino C. (2015). Irrigation canals in a semi-arid agricultural landscape surrounded by wetlands: Their role as a habitat for birds during the breeding season. Journal of Arid Environments, 118: 28-36. DOI: https://doi.org/10.1016/j.jaridenv.2015.02.021
  26. Mazzanti M., Montini A. (2001). Multi-attribute valuation techniques and choice experiments: a critical analysis of methodological aspects. Rivista di Economia Agraria, 56(2): 221-259.
  27. Natali F., Branca G. (2020). On positive externalities from irrigated agriculture and their policy implications: An overview. Economia agro-alimentare/Food Economy-Open Access, 22(2). DOI: https://doi.org/10.3280/ecag2-2020oa10412
  28. Peck D.E., Lovvorn J.R. (2001). The importance of flood irrigation in water supply to wetlands in the Laramie Basin, Wyoming, USA. Wetlands, 21(3): 370-378. DOI: http://dx.doi.org/10.1672/0277-5212(2001)021[0370:TIOFII]2.0.CO;2
  29. Piha H., Luoto M., Piha M., Merila J. (2007). Anuran abundance and persistence in agricultural landscapes during a climatic extreme. Global Change Biology, 13(1): 300-311. DOI: http://dx.doi.org/10.1111/j.1365-2486.2006.01276.x
  30. Puzzi C.M., Barenghi B., Sartorelli M., Trasforini S., Rossi S. (2005). “Il sistema dei canali gestiti dal consorzio di bonifica Est Ticino e Villoresi: studio per la mitigazione degli impatti sull’ittiofauna.” GRAIA srl
  31. Racchetti E., Salmaso F., Pinardi M., Quadroni S., Soana E., Sacchi E., Severini E., Celico F., Viaroli P., Bartoli M. (2019). Is flood irrigation a potential driver of river-groundwater interactions and diffuse nitrate pollution in agricultural watersheds?. Water, 11(11): 2304. DOI: https://doi.org/10.3390/w11112304
  32. Rolke D., Jaenicke B., Pfaender J., Rothe U. (2018). Drainage ditches as important habitat for species diversity and rare species of aquatic beetles in agricultural landscapes (Insecta: Coleoptera). Journal of Limnology, 77(3). DOI: https://doi.org/10.4081/jlimnol.2018.1819
  33. Sardaro R., Bozzo F., Fucilli V. (2018). The choice experiment and the stochastic profit frontier: a methodological approach for groundwater preservation policies. Aestimum, 81-107.
  34. Sayadi S., González-Roa M.C., Calatrava-Requena J. (2009). Public preferences for landscape features: The case of agricultural landscape in mountainous Mediterranean areas. Land Use Policy, 26(2): 334-344. DOI: http://dx.doi.org/10.1016/j.landusepol.2008.04.003
  35. Séraphin P., Vallet-Coulomb C., Gonçalvès J. (2016). Partitioning groundwater recharge between rainfall infiltration and irrigation return flow using stable isotopes: The Crau aquifer. Journal of Hydrology, 542: 241-253. DOI: https://dx.doi.org/10.1016/j.jhydrol.2016.09.005
  36. Stiglitz J.E. (2009). GDP fetishism. The Economists’ Voice, 6(8).
  37. Tarfasa S., Brouwer R. (2013). Estimation of the public benefits of urban water supply improvements in Ethiopia: a choice experiment. Applied Economics, 45(9): 1099-1108. DOI: https://doi.org/10.1080/00036846.2011.613793
  38. Verdonschot R.C., Keizer‐vlek H.E., Verdonschot P.F. (2011). Biodiversity value of agricultural drainage ditches: a comparative analysis of the aquatic invertebrate fauna of ditches and small lakes. Aquatic Conservation: Marine and Freshwater Ecosystems, 21(7): 715-727. DOI: http://dx.doi.org/10.1002/aqc.1220
  39. Ward F.A., Pulido-Velazquez M. (2008). Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences, 105(47): 18215-18220. DOI: http://dx.doi.org/10.1073/pnas.0805554105
  40. Working Group 2.6 - WATECO (2003). Common implementation strategy for the water framework directive (2000/60/EC). Guidance document n. 1 Economics and the environment The implementation challenge of the Water Framework Directive.
  41. Wunder S. (2005). Payments for Environmental Services: Some Nuts and Bolts. Occasional Paper No. 42. CIFOR, Bogor (2005).
  42. Wunder S. (2015). Revisiting the concept of payments for environmental services. Ecological Economics, 117: 234-243.
  43. Zucaro R., Ruberto M. (2019). Evaluation of ecosystem services of irrigated agriculture: a policy option for a sustainable water management. Italian Review of Agricultural Economics, 74(3): 11-22. DOI: https://doi.org/10.13128/rea-11208
  44. Zucaro R., Conti S.L., Marangon F., Massarutto A., Troiano S. (2020). Le esternalità ambientali dell’irrigazione in Italia. Aestimum, 59-77. DOI: https://doi.org/10.13128/aestim-9084