OnlineFirst Articles
Research Papers

Occurrence and identification of a ‘Candidatus Phytoplasma asteris’ (subgroup 16SrI-F) strain infecting Lolium rigidum in Iran

Seyyed Alireza ESMAEILZADEH-HOSSEINI
Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Centre, AREEO, Yazd, Iran
Ghobad BABAEI
Plant Protection Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Centre, AREEO, Shahrekord, Iran
Assunta BERTACCINI
Alma Mater Studiorum - University of Bologna, Italy
Categories

Published 2025-12-11

Keywords

  • Annual ryegrass,
  • Aster yellows,
  • Yazd province,
  • epidemiology

How to Cite

[1]
S. A. ESMAEILZADEH-HOSSEINI, G. BABAEI, and A. BERTACCINI, “Occurrence and identification of a ‘Candidatus Phytoplasma asteris’ (subgroup 16SrI-F) strain infecting Lolium rigidum in Iran”, Phytopathol. Mediterr., pp. 597–606, Dec. 2025.

Abstract

From 2016, witches’ broom and stunting symptoms were observed in Lolium rigidum grown in some fruit tree nurseries in Faragheh (Abarkouh, Yazd province, Iran). Total DNAs were extracted from symptomatic and asymptomatic plants and assessed for phytoplasma presence using direct and nested PCR to detect the 16S ribosomal RNA gene. From all symptomatic L. rigidum plant samples, expected length PCR amplicons were obtained. RFLP analysis with informative restriction enzymes showed identical profiles in all the samples resulted positive, that were also consistent with those of one of the subgroups of the aster yellows phytoplasmas (16SrI). The 16S rRNA gene sequence of Faragheh L. rigidum bushy stunt strain was 100% identical to some ‘Candidatus Phytoplasma asteris’ related strains, and 99.12% similar to the reference ‘Ca. P. asteris’ strain. The virtual RFLP pattern was identical (similarity coefficient 1.00) to the pattern of phytoplasmas in subgroup 16SrI-F. This is the first report of occurrence and molecular identification of this phytoplasma strain in L. rigidum and indicates a potential phytoplasma reservoir for trees in fruit tree nurseries where insect vectors may be present. This phytoplasma strain has been reported in symptomatic stone fruits in Spain and in potato in Ecuador. Further research on the epidemiology of witches’ broom and stunting in L. rigidum is required to develop elimination the phytoplasma from areas surrounding agricultural crops and avoid the risks of epidemics.

Downloads

Download data is not yet available.

References

  1. Bertaccini A., 2022. Plants and phytoplasmas: when bacteria modify plants. Plants 11: 1425. https://doi.org/10.3390/plants11111425
  2. Bertaccini A., 2023. Phytoplasma collection. https://www.ipwgnet.org/collection
  3. Bertaccini A., Duduk B., Paltrinieri S., Contaldo N., 2014. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences 5: 1763–1788. https://doi.org/10.4236/ajps.2014.512191
  4. Bertaccini A., Arocha-Rosete Y., Contaldo N., Duduk B., Fiore N.,… Zamorano A., 2022. Revision of the ‘Candidatus Phytoplasma’ species description guidelines. International Journal of Systematic & Evolutionary Microbiology 72: 005353. https://doi.org/10.1099/ijsem.0.005353
  5. Bertaccini A., Gandra R.R., Mateeti S., Pacini F., 2025. Phytoplasma transmission by seeds in alfalfa: a risk for agricultural crops and environment. Seeds 4: 39. https://doi.org/10.3390/seeds4030039
  6. Bogoutdinov D., Girsova N., Kastalyeva T., 2021. Danger of phytoplasma diseases for fodder crop cultivation. Economic and Phytosanitary Rationale for the Introduction of Feed Plants IOP Conference Series: Earth Environment Sciences 663: 012033. doi 10.1088/1755-1315/663/1/012033
  7. Calari A., Paltrinieri S., Contaldo N., Sakalieva D, Mori N., … Bertaccini A., 2011. Molecular evidence of phytoplasmas in winter oilseed rape, tomato and corn seedlings. Bulletin of Insectology 64(Supplement): S157–S158.
  8. Castillo-Carrillo C., Paltrinieri S., Buitrón Bustamante J., Bertaccini A., 2018. Detection and molecular characterization of a 16SrI-F phytoplasma in potato showing purple top disease in Ecuador. Australasian Plant Pathology 47: 311–315. https://doi.org/10.1007/s13313-018-0557-9
  9. Contaldo N., D’Amico G., Paltrinieri S., Diallo H.A., Bertaccini A., Arocha Rosete Y., 2019. Molecular and biological characterization of phytoplasmas from coconut palms affected by the lethal yellowing disease in Africa. Microbiological Research 223–225: 51–57. https://doi.org/10.1016/j.micres.2019.03.011
  10. Darabakula M., Mateeti S.T., Pacini F., Bertaccini A. Contaldo N., 2024. Eggplant little leaf-associated phytoplasma detection in seedlings under insect-proof conditions. International Journal of Plant Biology 15: 217–229. https://doi.org/10.3390/ijpb15020018
  11. Deng S., Hiruki C., 1991. Amplification of 16S rRNA genes from culturable and non-culturable mollicutes. Journal of Microbiological Methods 14: 53–61. https://doi.org/10.1016/0167-7012(91)90007-D
  12. Duduk B., Bertaccini A., 2006. Corn with symptoms of reddening: new host of “stolbur” phytoplasma. Plant Disease 90: 1313–1319. https://doi.org/10.1094/PD-90-1313
  13. Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Bertaccini A., 2016. Molecular identification and phylogenetic analysis of phytoplasmas associated with alfalfa witches’ broom diseases in the western areas of Iran. Phytopathogenic Mollicutes 6: 16–22.
  14. Esmaeilzadeh-Hosseini S.A., Babaei G., Davoodi S., Bertaccini A., 2020. Identification and impact of phytoplasmas associated with greenhouse cucumber phyllody in Iran. Advances in Horticultural Science 34(4): 413418. https://doi.org/10.5958/2249-4677.2016.00003.7
  15. Esmailzadeh Hosseini S.A., Azadvar M., Babaei G., Salehi M., Bertaccini A., 2023a. Diversity, distribution and status of phytoplasma diseases in Iran. In: Phytoplasma Diseases in Asian countries. Diversity, Distribution and Current Status (Tiwari A.K., Caglayan K., Al-Sadi A., Azadvar M., Abeysinghe S., ed.). Academic Press, pp. 39-83
  16. Esmailzadeh Hosseini S.A., Azadvar M., Babaei G., Salehi M., Bertaccini A., 2023b. Important phytoplasma ribosomal subgroups distributed in Iran. Phytopathogenic Mollicutes 13(1): 125–126. https://doi.org/10.5958/2249-4677.2023.00063.4
  17. Felsenstein J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.2307/2408678
  18. Green M.R., Sambrook J., 2012. Molecular cloning: a laboratory manual. Fourth edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y, USA.
  19. Gundersen D.E., Lee I-M., 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer sets. Phytopathologia Mediterranea 35: 144–151. https://www.jstor.org/stable/42685262
  20. Gungoosingh Bunwaree A., Contaldo N., Bertaccini A., 2023. Seed transmission of phytoplasmas in tomato and chili varieties commonly grown in Mauritius. Phytopathogenic Mollicutes 13: 55–56. doi/10.5958/2249-4677.2023.00028.2
  21. Healey A., Furtado A., Cooper T., Henry R.J., 2014. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10: 21. https://doi.org/10.1186/1746-4811-10-21
  22. Heap I., 2025. The International Herbicide-Resistant Weed Database. Online. February 5, 2025. Available www.weedscience.org
  23. IRPCM., 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic & Evolutionary Microbiology 54: 1243–1255. https://doi.org/10.1099/ijs.0.02854-0
  24. Jakovljević M., Jović J., Krstić O., Mitrović M., Marinković S., Cvrković T., 2020. Diversity of phytoplasmas identified in the polyphagous leafhopper Euscelis incisus (Cicadellidae, Deltocephalinae) in Serbia: pathogen inventory, epidemiological significance and vectoring potential. European Journal of Plant Pathology 156: 201–221. https://doi.org/10.1007/s10658-019-01878-w
  25. Jonson G.B., Matres J.M., Ong S., Tanaka T., Choi I-R., Chiba S., 2020. Reemerging rice orange leaf phytoplasma with varying symptoms expressions and its transmission by a new leafhopper vector—Nephotettix virescens distant. Pathogens 9: 990. https://doi.org/10.3390/pathogens9120990
  26. Kumar S., Stecher G., Tamura K., 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  27. Lee I-M., Gundersen-Rindal D.E., Davis R.E., Bartoszyk I., 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic & Evolutionary Microbiology 48: 1153–1169. https://doi.org/10.1099/00207713-48-4-1153
  28. Lee I-M., Gundersen-Rindal D.E., Davis R.E., Bottner K.D., Marcone C., Seemüller E. 2004., ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic & Evolutionary Microbiology 54: 1037–1048. https://doi.org/10.1099/ijs.0.02843-0
  29. Mateeti S.T., Checchi G., Messina N.A., Feduzi G., Bertaccini A., Contaldo, N., 2022. Presence and seed transmission of phytoplasmas in tomato fields in Italy. Phytopathogenic Mollicutes 12: 1–6. doi.org/10.5958/2249-4677.2022.00001.9
  30. Mateeti S.T., Darabakula M., Contaldo N., Pacini F., Bertaccini, A., 2023. Seed transmission of phytoplasmas infecting eggplants in India. Phytopathogenic Mollicutes 13: 57–58. doi.org/10.5958/2249-4677.2023.00029.4
  31. McKay A.C., Riley I.T., 1993. Sampling ryegrass to assess the risk of annual ryegrass toxicity. Australian Veterinary Journal 70(7): 241–243. https://doi.org/10.1111/j.1751-0813. 1993.tb08038.x
  32. Oshib Nataj M., Shekarchi H., Akbarzadeh M., Keshavarzi M., 2012. An autecological study of Lolium rigidum L. in Mazandaran Province. Journal of Plant Biological Science, 3(10): 37–46. https://doi.org/20.1001.1.20088264.1390.3.10.5.7
  33. Owen M.J, Martinez N.J., Powles S.B., 2014. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Australian Journal of Agricultural Research 58: 711–718. https://https://doi.org/10.1071/AR06283
  34. Randa-Zelyut F., Inak E., Demire Ozden E., Senal D., Ertunc F., 2022. Determination of potential insect vectors and subgroups of aster yellows phytoplasma in the carrot (Daucus carota L.) (Apiaceae) cultivation areas of Ankara and Konya Provinces, Türkiye. Türkish Entomology Derg 46(4): 385–398. https://doi.org/https://dx.doi.org/10.16970/entoted.1118787
  35. Saitou N., Nei M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology & Evolution 4: 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  36. Salehi M., Izadpanah K., Siampour M., Esmailzadeh Hosseini S.A., 2011. Polyclonal antibodies for the detection and identification of Fars alfalfa witches’ broom phytoplasma. Bulletin of Insectology 64(Supplement): 59–60.
  37. Salehi M., Esmaeilzadeh-Hosseini S.A., Faghihi M.M., Salehi E., Bertaccini A., 2025. Identification of a ‘Candidatus Phytoplasma asteris’ 16SrI-F strain infecting periwinkle in Iran. Phytopathogenic Mollicutes, 15(2): 175–180.
  38. Satta E., Carminati G., Bertaccini A., 2020. Phytoplasma presence in carrot seedlings. Australasian Plant Disease Notes 15: 11. https://doi.org/10.1007/s13314-020-0377-y
  39. Schneider B., Seemüller E., Smart C.D., Kirkpatrick B.C., 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In: Molecular and diagnostic procedures in Mycoplasmology (Razin S. and Tully J.G., ed.). Academic Press. San Diego, CA (USA) pp. 369–380. https://doi.org/10.1016/B978-012583805-4/50040-6
  40. Tamura K., Nei M., Kumar S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of National Academy of Science (USA) 101: 11030–11035. https://doi.org/10.1073/pnas.0404206101
  41. Urbanaviciene L., Valiunas D., Jomantiene R., 2005. Molecular detection and identification of subgroup 16SrI-L phytoplasma in ryegrass (Lolium multiflorum Lam.). Phytopathologia Polonica 35: 121–124.
  42. Wegulo S.N, Carlson M.P., 2011. Ergot of small grain cereals and grasses and its health effects on humans and livestock. University of Nebraska–Lincoln Extension.
  43. Zhao Y., Wei W., Lee I-M., Shao J., Davis R.E., 2009. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic & Evolutionary Microbiology 59: 2582–2593. https://doi.org/10.1099/ijs.0.010249-0
  44. Zwolinska A., Krawczyk K., Pospieszny H., 2012. Molecular characterization of “stolbur” phytoplasma associated with pea plants in Poland. Journal of Phytopathology 160: 317–323. https://doi.org/10.1111/j.1439-0434.2012.01903.x