OnlineFirst Articles
Short Notes

Phytophthora hibernalis, P. lacustris and P. multivora associated with declining Ligustrum lucidum trees in an urban park in Portugal

Carlo BREGANT
Dipartimento Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
Benedetto Teodoro LINALDEDDU
Dipartimento Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell’Università, 16, 35020 Legnaro, Italy
Michele NARDUZZI
Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo 01100, Italy
Anna Maria VETTRAINO
Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo 01100, Italy
Artur ALVES
Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
Categories

Published 2025-11-03

Keywords

  • Emerging disease,
  • Oomycetes,
  • urban green areas

How to Cite

[1]
C. BREGANT, B. T. LINALDEDDU, M. NARDUZZI, A. M. VETTRAINO, and A. ALVES, “Phytophthora hibernalis, P. lacustris and P. multivora associated with declining Ligustrum lucidum trees in an urban park in Portugal”, Phytopathol. Mediterr., pp. 559–566, Nov. 2025.

Abstract

During a monitoring survey carried out in a park in Aveiro, Portugal, typical Phytophthora symptoms of root rot, stem bleeding cankers and extensive canopy dieback were observed on mature ornamental glossy privet trees (Ligustrum lucidum). A study carried out in spring 2022 aimed to isolate the causal agents, as there is was no available knowledge on potential root pathogens of this host. Thirty-two Phytophthora isolates were obtained from inner bark tissues and/or rhizosphere samples (soil and fine roots) collected from 27 declining glossy privet trees. Based on morpho-biometric data and phylogeny of concatenated ITS and cox1 sequences, Phytophthora isolates were identified as P. hibernalis (14 isolates), P. multivora (12) and P. lacustris (6). Pathogenicity tests confirmed the virulence of the three species on glossy privet. Phytophthora lacustris was the most aggressive species, while P. hibernalis was most abundant. These results give new insights into emerging Phytophthora-related tree diseases in urban areas, and highlight the importance of enhancing biosecurity measures against these invasive pathogens.

Downloads

Download data is not yet available.

References

  1. Álvarez L.A., Pérez-Sierra A., García-Jiménez J., Abad-Campos P., Landeras E., Alzugaray R., 2007. First report of leaf spot and twig blight of Rhododendron spp. caused by Phytophthora hibernalis in Spain. Plant Disease 91(7): 909. https://doi.org/10.1094/PDIS-91-7-0909A
  2. Antonelli C., Biscontri M., Tabet D., Vettraino A.M., 2023. The never-ending presence of Phytophthora species in Italian nurseries. Pathogens 12(1): 15. https://doi.org/10.3390/pathogens12010015
  3. Antonelli C., Soulioti N., Linaldeddu B.T., Tsopelas P., Biscontri M., … Vettraino A.M., 2024. Phytophthora nicotianae and Ph. mediterranea: A biosecurity threat to Platanus orientalis and P. x acerifolia in urban green areas in Greece. Urban Forestry and Urban Greening 95: 128281. https://doi.org/10.1016/j.ufug.2024.128281
  4. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D. J., 1990. Basic local alignment search tool. Journal of Molecular Biology 215(3): 403–410.
  5. Bose T., Spies C.F.J., Hammerbacher A., Coutinho T.A. 2023. Phytophthora: an underestimated threat to agriculture, forestry, and natural ecosystems in sub-Saharan Africa. Mycological Progress 22(11): 78. https://doi.org/10.1007/s11557-023-01926-0
  6. Bregant C., Sanna G. P., Bottos A., Maddau L., Montecchio L., Linaldeddu B.T., 2020. Diversity and pathogenicity of Phytophthora species associated with declining alder trees in Italy and description of Phytophthora alpina sp. nov. Forests 11(8), 848. https://doi.org/10.3390/f11080848
  7. Bregant C., Rossetto G., Meli L., Sasso N., Montecchio L., … Linaldeddu B.T. 2023a. Diversity of Phytophthora Species Involved in New Diseases of Mountain Vegetation in Europe with the Description of Phytophthora pseudogregata sp. nov. Forests 14(8): 1515. https://doi.org/10.3390/f14081515
  8. Bregant C., Batista E., Hilário S., Linaldeddu B.T., Alves A., 2023b. Phytophthora species involved in Alnus glutinosa decline in Portugal. Pathogens 12(2): 276. https://doi.org/10.3390/pathogens12020276
  9. Bregant C., Batista E., Hilário S., Linaldeddu B.T., Alves A., 2023c. First report of Phytophthora hibernalis, P. multivora and P. niederhauserii causing root rot and bleeding cankers on Eucalyptus globulus in Portugal. New Disease Reports 47(2): e12171. https://doi.org/10.1002/ndr2.12171
  10. Bregant C., Rossetto G., Sasso N., Montecchio L., Maddau L., Linaldeddu B.T., 2024. Diversity and distribution of Phytophthora species across different types of riparian vegetation in Italy with the description of Phytophthora heteromorpha sp. nov. International Journal of Systematic and Evolutionary Microbiology 74: 006272. https://doi.org/10.1099/ijsem.0.006272
  11. Bregant C., Batista E., Hilário S., Linaldeddu B.T., Alves A., 2025. Diversity and Distribution of Phytophthora Species Along an Elevation Gradient in Natural and Semi-Natural Forest Ecosystems in Portugal. Pathogens 14(1): 103. https://doi.org/10.3390/pathogens14010103
  12. Burgess T.I., Edwards J., Drenth A., Massenbauer T., Cunnington J., … Tan Y.P., 2021. Current status of Phytophthora in Australia. Persoonia 47(27): 151–177.
  13. Carne W.M., 1925. A brown rot of Citrus in Australia (Phytophthora hibernalis n. sp.). CABI Database 12, 13–41.
  14. Diogo E., Machado H., Reis A., Valente C., Phillips A.J., Bragança H., 2023. Phytophthora alticola and Phytophthora cinnamomi on Eucalyptus globulus in Portugal. European Journal of Plant Pathology 165: 255–269. https://doi.org/10.1007/s10658-022-02604-9
  15. Erwin D.C., Ribeiro O.K., 1996. Phytophthora diseases worldwide. American Phytopathological Society, Saint Paul, Minnesota, USA. (pp. xii+562).
  16. Fernandez R.D., Ceballos S.J., Aragón R., Malizia A., Montti L., … Grau H.R., 2020. A global review of Ligustrum lucidum (Oleaceae) invasion. The Botanical Review 86: 93–118. https://doi.org/10.1007/s12229-020-09228-w
  17. Graham J., Feichtenberger E., 2015. Citrus Phytophthora diseases: management challenges and successes. Journal of Citrus Pathology 27203. https://doi.org/10.5070/C421027203
  18. Horta Jung M., Maia C., Mora‐Sala B., Abad‐Campos P., Schena L., … Jung T., 2025. High diversity of Phytophthora species in natural ecosystems and nurseries of Portugal: Detrimental side effect of plant introductions from the age of discovery to modern globalization. Plant Pathology 74: 330–362. https://doi.org/10.1111/ppa.14022.
  19. Hulbert J.M., Agne M.C., Burgess T.I., Roets F., Wingfield M.J. 2017. Urban environments provide opportunities for early detections of Phytophthora invasions. Biological Invasions 19: 3629–3644. https://doi.org/10.1007/s10530-017-1585-z
  20. Kabisch N., Qureshi S., Haase D., 2015. Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environmental Impact Assessment Review 50(1): 25–34. https://doi.org/10.1016/j.eiar.2014.08.007
  21. Kanoun‐Boulé M., Vasconcelos T., Gaspar J., Vieira S., Dias‐Ferreira C., Husson C., 2016. Phytophthora ×alni and Phytophthora lacustris associated with common alder decline in Central Portugal. Forest Pathology 46(2): 174–176. https://doi.org/10.1111/efp.12273
  22. Khdiar M.Y., Barber P.A., Hardy G.E.S.J., Shaw C., Steel E.J., McMains C., Burgess T.I., 2020. Association of Phytophthora with declining vegetation in an urban forest environment. Microorganisms 8(7): 973. https://doi.org/10.3390/microorganisms8070973
  23. Laurence M.H., Mertin A.A., Scarlett K., Pang C., Tabassum S., … Summerell B.A., 2024. Phytophthora in urban tree planting stock: Are we managing the risk to the urban forest and natural ecosystems? Plant Pathology 73(8): 2030–2042. https://doi.org/10.1111/ppa.13960
  24. Linaldeddu B.T., Rossetto G., Maddau L., Vatrano T., Bregant C., 2023. Diversity and pathogenicity of Botryosphaeriaceae and Phytophthora species associated with emerging olive diseases in Italy. Agriculture 13(8): 1575. https://doi.org/10.3390/agriculture13081575
  25. Linderman R.G., Zeitoun F. 1977. Phytophthora cinnamomi causing root rot and wilt of nursery-grown native Western azalea and Salal. Plant Disease Reports 61: 1045–1048.
  26. Martin F.N., Tooley P.W., 2003. Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia 95(2): 269–284.
  27. Nadel-Schiffmann M., 1947. Phytophthora hibernalis. CABI Databases 1-2, 148–157.
  28. Nechwatal J., Bakonyi J., Cacciola S.O., Cooke D.E.L., Jung T., … Brasier C.M., 2013. The morphology, behaviour and molecular phylogeny of Phytophthora taxon Salixsoil and its redesignation as Phytophthora lacustris sp. nov. Plant Pathology 62: 355–369. https://doi.org/10.1111/j.1365-3059.2012.02638.x
  29. Oldfield E.E., Warren R.J., Felson A.J., Bradford M.A., 2013. Challenges and future directions in urban afforestation. Journal of Applied Ecology 50(5): 1169–1177. https://doi.org/10.1111/1365-2664.12124
  30. Rial-Martínez C., Souto-Herrero M., Piñón-Esteban P., García-González I., Aguín-Casal O., Salinero-Corral C., Vázquez-Ruiz R.A., 2023. First report of root rot caused by Phytophthora lacustris on alder (Alnus lusitanica) in Spain. Plant Disease 107(19): 3322. https://doi.org/10.1094/PDIS-04-23-0793-PDN
  31. Schlenzig A., Campbell R., Chard J., 2015. Phytophthora species infecting hardy ornamentals in nurseries and the managed environment in Scotland. Journal of Phytopathology 163(7-8): 686–689. https://doi.org/10.1111/jph.12308
  32. Scott P.M., Burgess T.I., Barber P.A., Shearer B.L., Stukely M.J.C., … Jung T., 2009. Phytophthora multivora sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia. Persoonia 22(3): 1–13. https://doi.org/10.1111/ppa.13312
  33. Scott P., Bader M.K.F., Burgess T.I., Hardy G., Williams N., 2019. Global biogeography and invasion risk of the plant pathogen genus Phytophthora. Environmental Science & Policy 101(11): 175–182. https://doi.org/10.1016/j.envsci.2019.08.020.
  34. Shaw R.H., Cock M.J., Evans H.C., 2018. The natural enemies of privets (Ligustrum: Oleaceae): a literature review, with particular reference to biological control. CABI Reviews 13(11): 1–24. https://doi.org/10.1079/PAVSNNR201813011
  35. Silva V., Laguna E., Guillot D., 2023. Novos dados sobre neófitos em Portugal. Bouteloua 33: 312–328.
  36. Sims L.L., Garbelotto M., 2021. Phytophthora species repeatedly introduced in Northern California through restoration projects can spread into adjacent sites. Biological Invasions 23: 2173–2190.
  37. Stenhouse R.N., 2005. Assessing disturbance and vegetation conditions in urban bushlands. Australasian Journal of Environmental Management 12: 16–26. https://doi.org/10.1080/14486563.2005.10648630
  38. Threlfall C.G., Ossola A., Hahs A.K., Williams N.S., Wilson L., Livesley S.J., 2016. Variation in vegetation structure and composition across urban green space types. Frontiers in Ecology and Evolution 4: 66. https://doi.org/10.3389/fevo.2016.00066
  39. Tsykun T., Prospero S., Schoebel C.N., Rea A., Burgess T.I. 2022. Global invasion history of the emerging plant pathogen Phytophthora multivora. BMC genomics 23: 153. https://doi.org/10.1186/s12864-022-08363-5
  40. Vettraino A.M., Soulioti N., Matosevic D., Lehtijarvi H.T.D., Woodward S., Santini A., Luchi N., 2025. Management of fungal diseases of Platanus under changing climate conditions: case studies in urban areas. Urban Forestry and Urban Greening 128750. https://doi.org/10.1016/j.ufug.2025.128750
  41. White T.J., Bruns T., Lee S.J.W.T., Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: (Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J., ed.)., PCR Protocols: A Guide to Methods and Applications, Academic Press, New York, 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1