Vol. 62 No. 3 (2023)
Articles

Current status of Botryosphaeriaceae species in Italy: Impacts on agricultural crops and forest ecosystems

Dalia AIELLO
Dipartimento of Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania
Carlo BREGANT
Dipartimento del Territorio e Sistemi Agro-Forestali, University of Padova, Viale dell’Università, 16, 35020 Legnaro
Antonia CARLUCCI
Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria, University of Foggia, Via Napoli 25, 71122 Foggia
Vladimiro GUARNACCIA
Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, Torino
Giorgio GUSELLA
Dipartimento of Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania
Benedetto Teodoro LINALDEDDU
Dipartimento del Territorio e Sistemi Agro-Forestali, University of Padova, Viale dell’Università, 16, 35020 Legnaro
Laura MUGNAI
Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), University of Florence, P. le delle Cascine 28, 50144 Firenze
Maria Luisa RAIMONDO
Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria, University of Foggia, Via Napoli 25, 71122 Foggia
Giancarlo POLIZZI
Dipartimento of Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via S. Sofia 100, 95123 Catania

Published 2023-12-30

Keywords

  • invasive pathogens,
  • geographic distribution,
  • host-range and disease symptoms,
  • species identification,
  • metabolites production

How to Cite

[1]
D. AIELLO, “Current status of Botryosphaeriaceae species in Italy: Impacts on agricultural crops and forest ecosystems”, Phytopathol. Mediterr., vol. 62, no. 3, pp. 381–412, Dec. 2023.

Abstract

Many fungi belonging to Botryosphaeriaceae are well-known as causal agents of diseases in economically and ecologically important agricultural crops and forest trees. In Italy, the high diffusion of Botryosphaeriaceae infections observed over the last decade, has shown the importance of this group of fungi, which are becoming limiting factors for plant production in agricultural systems, nurseries and natural and urban landscapes. Global warming and stress factors such as occasional extreme climatic events can affect the susceptibility of host plants, as well as fungus behaviour, increasing the risk of future infections. Available reports of Botryosphaeriaceae in Italy have been examined, focusing on wood and fruit pathogens, resulting in a list of ten genera and 57 species. Diplodia is the most widespread genus in Italy with 76 records on 44 hosts, while at species level, Neofusicoccum parvum, Botryosphaeria dothidea and Diplodia seriata show the widest host ranges and many records. The ability of the pathogens to remain latent on asymptomatic plants, and uncontrolled trade of plant materials among countries, facilitate the dissemination and potential introduction of new Botryosphaeriaceae species. Preventive detection and adequate control strategies are always needed to limit the potential damage caused by Botryosphaeriaceae. This review had particular emphasis on host-pathogen associations, disease symptoms, geographic distribution, metabolite production, and accurate pathogen identification.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Abou-Mansour E., Débieux J.L., Ramírez-Suero M., Bénard-Gellon M., Magnin-Robert M.,… Larignon P., 2015. Phytotoxic metabolites from Neofusicoccum parvum, a pathogen of Botryosphaeria dieback of grapevine. Phytochemistry 115: 207–215. https://doi.org/10.1016/j.phytochem.2015.01.012 DOI: https://doi.org/10.1016/j.phytochem.2015.01.012
  2. Agnoletti M., Piras F., Venturi M., Santoro A., 2022. Cultural values and forest dynamics: The Italian forests in the last 150 years. Forest Ecology and Management 503: 119655. https://doi.org/10.1016/j.foreco.2021.119655 DOI: https://doi.org/10.1016/j.foreco.2021.119655
  3. Aiello D., Gusella G., Fiorenza A., Guarnaccia V., Polizzi G., 2020. Identification of Neofusicoccum parvum causing canker and twig blight on Ficus carica in Italy. Phytopathologia Mediterranea 59(1): 213–218. https://doi.org/10.36253/phyto-10798 DOI: https://doi.org/10.36253/phyto-10798
  4. Aiello D., Guarnaccia V., Costanzo M.B., Leonardi G.R., Epifani F., … Polizzi G., 2022. Woody canker and shoot blight caused by Botryosphaeriaceae and Diaporthaceae on Mango and Litchi in Italy. Horticulturae 8: 330. https://doi.org/10.3390/horticulturae8040330 DOI: https://doi.org/10.3390/horticulturae8040330
  5. Alberti I., Prodi A., Nipoti P., Grassi G., 2018. First report of Neofusicoccum parvum causing stem and branch canker on Cannabis sativa in Italy. Journal of Plant Diseases and Protection 125(5): 511–513. https://dx.doi.org/10.1007/s41348-018-0174-4 DOI: https://doi.org/10.1007/s41348-018-0174-4
  6. Aloi F., Giambra S., Schena L., Surico G., Pane A., … Cacciola S.O., 2020. New insights into scabby canker of Opuntia Ficus-indica, caused by Neofusicoccum batangarum. Phytopathologia Mediterranea 59(2): 269–284. https://doi.org/10.14601/Phyto-11225
  7. Aloi F., Riolo M., Parlascino R., Pane A., Cacciola S. O. 2021. Bot gummosis of lemon (Citrus× limon) caused by Neofusicoccum parvum. Journal of Fungi 7(4): 294. https://doi.org/10.3390%2Fjof7040294 DOI: https://doi.org/10.3390/jof7040294
  8. Alves A., Correia A., Luque J., Phillips A.J.L., 2004. Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia 96(3): 598–613. https://doi.org/10.2307/3762177 DOI: https://doi.org/10.1080/15572536.2005.11832956
  9. Alves A., Crous P.W., Correia A., Phillips A.J.L., 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity 28: 1–13.
  10. Alves A., Linaldeddu B.T., Deidda A., Scanu B., Phillips A.J.L., 2014. The complex of Diplodia species associated with Fraxinus and some other woody hosts in Italy and Portugal. Fungal Diversity 67(1): 143–156. https://doi.org/10.1007/s13225-014-0282-9 DOI: https://doi.org/10.1007/s13225-014-0282-9
  11. Andolfi A., Maddau L., Cimmino A., Linaldeddu B.T., Franceschini A., … Evidente A., 2012. Cyclobotryoxide, a phytotoxic metabolite produced by the plurivorous pathogen Neofusicoccum australe. Journal of Natural Products 75: 1785–1791. https://doi.org/10.1021/np300512m DOI: https://doi.org/10.1021/np300512m
  12. Andolfi A., Maddau L., Cimmino A., Linaldeddu B.T., Basso S., … Evidente A., 2014a. Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a new grapevine pathogen. Phytochemistry 103: 145–153. https://doi.org/10.1016/j.phytochem.2014.03.016 DOI: https://doi.org/10.1016/j.phytochem.2014.03.016
  13. Andolfi A., Maddau L., Basso S., Linaldeddu B.T., Cimmino A., … Evidente A., 2014b. Diplopimarane, a phytotoxic 20-nor-ent-pimarane produced by the oak pathogen Diplodia quercivora. Journal of Natural Products 77: 2352–2360. https://doi.org/10.1021/np500258r DOI: https://doi.org/10.1021/np500258r
  14. Ariyawansa H.A., Hyde K.D., Jayasiri S.C., Buyck B., Thilini Chethana K.W., … Chen X., 2015. Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75: 27–274. https://doi.org/10.1007/s13225-015-0346-5 DOI: https://doi.org/10.1007/s13225-015-0346-5
  15. Baaijens R., Sosnowski M. R., Ayres M., Savocchia S., 2019. Standardizing Botryosphaeriaceae infection levels in experimental grapevine plant materials. Phytopathologia Mediterranea 58(2): 405–406. https://doi.org/10.14601/Phytopathol_Mediter-10627
  16. Barone E., Caruso T., Di Marco L., 1985. Il pistacchio in Sicilia: superfici coltivate e aspetti agronomici. Informatore Agrario 40: 35–42.
  17. Barone E., Marra F.P., 2004. The pistachio industry in Italy: Current situation and prospects. Nucis 12: 16–19.
  18. Batista E., Lopes A., Alves A., 2021. What do we know about Botryosphaeriaceae? An overview of a worldwide cured dataset. Forests 12: 313. https://doi.org/10.3390/f12030313 DOI: https://doi.org/10.3390/f12030313
  19. Batista E., Lopes A., Miranda P., Alves A., 2023. Can species distribution models be used for risk assessment analyses of fungal plant pathogens? A case study with three Botryosphaeriaceae species. European Journal of Plant Pathology 165: 41–56. https://doi.org/10.1007/s10658-022-02587-7 DOI: https://doi.org/10.1007/s10658-022-02587-7
  20. Belair M., Grau A.L., Chong J., Tian X., Luo J., Guan X., Pensec F., 2022. Pathogenicity factors of Botryosphaeriaceae associated with grapevine trunk diseases: New developments on their action on grapevine defense responses. Pathogens 11(8): 951. https://doi.org/10.3390/pathogens11080951 DOI: https://doi.org/10.3390/pathogens11080951
  21. Bertetti D., Pensa P., Poli A., Gullino M.L., Garibaldi A., 2013. Fungal pathogens found on new hosts in Italy: Golovinomyces cichoracearum on Aster novi-belghii, Botryosphaeria dothidea on pear fruit, Phytophthora cinnamomi on Kalmia latifolia. Protezione delle Colture 2: 54–55.
  22. Bezerra J.D.P., Crous P.W., Aiello D., Gullino M.L., Polizzi G., Guarnaccia V., 2021. Genetic diversity and pathogenicity of Botryosphaeriaceae species associated with symptomatic Citrus plants in Europe. Plants 10: 492. https://doi.org/10.3390/plants10030492 DOI: https://doi.org/10.3390/plants10030492
  23. Blodgett J.T., Stanosz G.R., 1997. Sphaeropsis sapinea morphotypes differ in aggressiveness, but both infect non wounded red and jack pine. Plant Disease 81: 143–147. https://doi.org/10.1094/PDIS.1997.81.2.143 DOI: https://doi.org/10.1094/PDIS.1997.81.2.143
  24. Bosso L., Lucchi N., Maresi G., Cristinzio G., Smeraldo S., Russo D., 2017. Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning. Forest Ecology and Management 400: 655–664. https://doi.org/10.1016/j.foreco.2017.06.044 DOI: https://doi.org/10.1016/j.foreco.2017.06.044
  25. Brunetti A., Matere A., Lumia V., Pasciuta V., Fusco V., … Pilotti M., 2022. Neofusicoccum mediterraneum is involved in a twig and branch dieback of olive trees observed in Salento (Apulia, Italy). Pathogens 11(1): 53. https://doi.org/10.3390%2Fpathogens11010053 DOI: https://doi.org/10.3390/pathogens11010053
  26. Burruano S., Mondello V., Conigliaro G., Alfonzo A., Spagnolo A., Mugnai L., 2008. Grapevine decline in Italy caused by Lasiodiplodia theobromae. Phytopathologia Mediterranea 47(2): 132–136. https://doi.org/10.14601/Phytopathol_Mediterr-2616
  27. Cabras A., Mannoni M.A., Serra S., Andolfi A., Fiore M., Evidente A., 2006. Occurrence, isolation and biological activity of phytotoxic metabolites produced in vitro by Sphaeropsis sapinea, pathogenic fungus of Pinus radiata. European Journal of Plant Pathology 115(2): 187–193. https://doi.org/10.1007/s10658-006-9006-7 DOI: https://doi.org/10.1007/s10658-006-9006-7
  28. Carlucci A., Cibelli F., Lops F., Raimondo M.L., 2015. Characterization of Botryosphaeriaceae species as causal agents of trunk diseases on grapevines. Plant Disease 99(12): 1678–1688. https://doi.org/10.1094/PDIS-03-15-0286-RE DOI: https://doi.org/10.1094/PDIS-03-15-0286-RE
  29. Carlucci A., Frisullo S. 2009 First report of Diplodia corticola on grapevine in Italy. Journal of Plant Pathology 91(1): 233. https://hdl.handle.net/11369/16468
  30. Carlucci A., Lops F., Raimondo M.L., Gentile V., Mucci M., Frisullo S., 2009. The Botryosphaeria species from vineyards of Apulia. Phytopathologia Mediterranea 48: 180.
  31. Carlucci A., Raimondo M.L., Cibelli F., Phillips A.J.L., Lops F., 2013. Pleurostomophora richardsiae, Neofusicoccum parvum and Phaeoacremonium aleophilum associated with a decline of olives in southern Italy. Phytopathologia Mediterranea 52(3): 517–527. https://doi.org/10.14601/Phytopathol_Mediterr-13526
  32. Carlucci A., Lops F., Mostert L., Halleen F., Raimondo M.L., 2017. Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathologia Mediterranea 56(1): 10–39. https://doi.org/10.14601/Phytopathol_Mediterr-18769
  33. Carlucci A., Raimondo M.L., Ricciardi G., Macolino S., Di Biase I., … Lops F. 2020. Relazione tra Xylella fastidiosa e patogeni lignicoli dell’olivo. Informatore Agrario 42: 32–34.
  34. Cecchi G., Di Piazza S., Badano D., Rosa E., Mariotti M., Zotti M., 2020. First record of Neofusicoccum buxi Crous on Buxus sempervirens L. infested by Cydalima perspectalis (Walker) in Italy. Plant Biosystems 154(4): 430–432. https://doi.org/10.1080/11263504.2020.1762784 DOI: https://doi.org/10.1080/11263504.2020.1762784
  35. Chen S. F., Morgan D.P., Michailides T.J., 2014. Botryosphaeriaceae and Diaporthaceae associated with panicle and shoot blight of pistachio in California, USA. Fungal Diversity 67(1): 157–179. https://doi.org/10.1007/s13225-014-0285-6 DOI: https://doi.org/10.1007/s13225-014-0285-6
  36. Cimmino A., Maddau L., Masi M., Evidente M., Linaldeddu B.T., Evidente A., 2016. Further secondary metabolites produced by Diplodia corticola, a fungal pathogen involved in cork oak decline. Tetrahedron 72(43): 6788–6793. https://hdl.handle.net/11388/168071 DOI: https://doi.org/10.1016/j.tet.2016.09.008
  37. Cimmino A., Maddau L., Masi M., Linaldeddu B.T., Pescitelli G., Evidente A., 2017. Fraxitoxin, a new isochromanone isolated from Diplodia fraxini. Chemistry and Biodiversity 14: e1700325. https://doi.org/10.1002/cbdv.201700325 DOI: https://doi.org/10.1002/cbdv.201700325
  38. Cimmino A., Maddau L., Masi M., Linaldeddu B.T., Evidente A. 2019. Secondary metabolites produced by Sardiniella urbana, a new emerging pathogen on European hackberry. Natural Product Research 33(13): 1862–1869. https://doi.org/10.1080/14786419.2018.1477154 DOI: https://doi.org/10.1080/14786419.2018.1477154
  39. Costanzo M. B., Gusella G., Fiorenza A., Leonardi G. R., Aiello D., Polizzi G., 2022. Lasiodiplodia citricola, a new causal agent of Acacia spp. dieback. New Disease Reports 45(2): e12094. https://doi.org/10.1002/ndr2.12094 DOI: https://doi.org/10.1002/ndr2.12094
  40. Cristinzio M., 1938. Una malattia del pistacchio causata da una Botryodiplodia. Ricerche Fitopatologiche per la Campania ed il Mezzogiorno 7: 42–66.
  41. Cristinzio G., 1979. Gravi attacchi di Botryosphaeria obtusa su vite in provincia di Isernia. Informatore Fitopatologico 6: 21–23.
  42. Cristinzio G., Bosso L., Somma S., Varlese R., Saracino A., 2015. Serious damage by Diplodia africana on Pinus pinea in the Vesuvius National Park (Campania Region, Southern Italy). In: Proceedings of the Second International Congress of Silviculture. Designing the Future of the Forestry Sector, 26-29 November, 2014, Florence, Italy, Accademia Italiana di Scienze Forestali 1: 479–481. https://doi.org/10.4129/2cis-cg-ser DOI: https://doi.org/10.4129/2cis-cg-ser
  43. Crous P.W., Slippers B., Wingfield M.J., Rheeder J., Marasas W.F., Philips A.J., Groenewald J.Z. 2006. Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55(1): 235–253. https://doi.org/10.3114/sim.55.1.235 DOI: https://doi.org/10.3114/sim.55.1.235
  44. Custódio F.A., Machado A.R., Soares D. J., Pereira O.L., 2018. Lasiodiplodia hormozganensis causing basal stem rot on Ricinus communis in Brazil. Australasian Plant Disease Notes 13: 1–6. https://doi.org/10.1007/s13314-018-0308-3 DOI: https://doi.org/10.1007/s13314-018-0308-3
  45. Dardani G., Mugnai L., Bussotti S., Gullino M.L., Guarnaccia, V., 2023. Grapevine dieback caused by Botryosphaeriaceae species, Paraconiothyrium brasiliense, Seimatosporium vitis-viniferae and Truncatella angustata in Piedmont: characterization and pathogenicity. Phytopathologia Mediterranea 60: 283–306. https://doi.org/10.36253/phyto-14673 DOI: https://doi.org/10.36253/phyto-14673
  46. De Corato U., Trupo M., Carboni M.A., Palazzo S., Albergo R., Nobili S., 2007. Biological control of the postharvest diseases of citrus fruits using lyophilized antagonistic yeasts. In: Proceedings of the International Congress Cost Action 924 Novel approaches for the Control of Postharvest Diseases and Disorders, 3-5 May, 2007, Bologna, Italy, 84–88.
  47. Deidda A., Buffa F., Linaldeddu B.T., Pinna C., Scanu B., … Floris I., 2016. Emerging pests and diseases threaten Eucalyptus camaldulensis plantations in Sardinia, Italy. iForest - Biogeosciences and Forestry 9: 883–891. https://doi.org/10.3832/ifor1805-009 DOI: https://doi.org/10.3832/ifor1805-009
  48. Dell’Olmo E., Tripodi P., Zaccardelli M., Sigillo L., 2022. Occurrence of Macrophomina phaseolina on chickpea in Italy: pathogen identification and characterization. Pathogens 11(8): 842. https://doi.org/10.3390/pathogens11080842 DOI: https://doi.org/10.3390/pathogens11080842
  49. Dell’Olmo E., Zaccardelli M., Basile B., Corrado G., Sigillo L. 2023. Identification and characterization of new seedborne pathogens in Phaseolus vulgaris Landraces of southern Italy. Pathogens 12(1): 108. https://doi.org/10.3390/pathogens12010108 DOI: https://doi.org/10.3390/pathogens12010108
  50. Di Gennaro S.F., Battiston E., Di Marco S., Facini O., Matese A., … Mugnai L., 2016. Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex. Phytopathologia Mediterranea 55: 262–275. https://doi.org/10.14601/Phytopathol_Mediterr-18312
  51. Di Lecce R., Masi M., Linaldeddu B. T., Pescitelli G., Maddau L., Evidente A., 2021. Bioactive secondary metabolites produced by the emerging pathogen Diplodia olivarum. Phytopathologia Mediterranea 60(1): 129–138. https://doi.org/10.36253/phyto-12170 DOI: https://doi.org/10.36253/phyto-12170
  52. Dissanayake A.J., Phillips A.J.L., Li X.H., Hyde K.D., 2016a. Botryosphaeriaceae: Current status of genera and species. Mycosphere 7: 1001–1073. https://doi.org/10.5943/mycosphere/si/1b/13 DOI: https://doi.org/10.5943/mycosphere/si/1b/13
  53. Dissanayake A.J., Camporesi E., Hyde K.D., Phillips A.J.L., Fu C.Y., … Li X., 2016b. Dothiorella species associated with woody hosts in Italy. Mycosphere 7(1): 51–63. https://doi.org/10.5943/mycosphere/7/1/6 DOI: https://doi.org/10.5943/mycosphere/7/1/6
  54. Dissanayake A.J., Camporesi E., Hyde K.D., Yan J.Y., Li X.H., 2017. Saprobic Botryosphaeriaceae, including Dothiorella italica sp. nov., associated with urban and forest trees in Italy. Mycosphere 8(2): 1157–1176. https://doi.org/10.5943/mycosphere/8/5/6 DOI: https://doi.org/10.5943/mycosphere/8/2/7
  55. Dubos B., Cere L., Larignon P., Fulchic R., 2001. Observation on Black Dead Arm in French Vineyards. Phytopathologia Mediterranea 40(Supplement): S336–S342. https://doi.org/10.14601/Phytopathol_Mediterr-1629
  56. Evidente A., Sparapano L., Fierro O., Bruno G., Giordano F., Motta A., 1997. Sphaeropsidins B and C, phytotoxic pimarane diterpenes from Sphaeropsis sapinea f. sp. cupressi and Diplodia mutila. Phytochemistry 45(4): 705–713. DOI: https://doi.org/10.1016/S0031-9422(97)00006-X
  57. Evidente A., Sparapano L., Fierro O., Bruno G., Giordano F., Motta A., 1998. Sphaeropsidone and episphaeropsidone, phytotoxic dimedone methylethers produced by Sphaeropsis sapinea f. sp. cupressi grown in liquid culture. Phytochemistry 48, (7): 1139–1143. https://doi.org/10.1016/S0031-9422(97)00897-2 DOI: https://doi.org/10.1016/S0031-9422(97)00897-2
  58. Evidente A., Sparapano L., Fierro O., Bruno G., Motta A., 1999. Sapinofuranones A and B, two new 2(3H)-dihydrofuranones produced by Sphaeropsis sapinea, a common pathogen of conifers. Journal of Natural Products 62(2): 253–256. https://doi.org/10.1021/np980318t DOI: https://doi.org/10.1021/np980318t
  59. Evidente A., Sparapano L., Bruno G., Motta A., 2002. Sphaeropsidins D and E, two other pimarane diterpenes, produced in vitro by the plant pathogenic fungus Sphaeropsis sapinea f. sp. cupressi. Phytochemistry 59(8): 817–823. https://doi.org/10.1016/S0031-9422(02)00015-8 DOI: https://doi.org/10.1016/S0031-9422(02)00015-8
  60. Evidente A., Maddau L., Spanu E., Franceschini A., Lazzaroni S., Motta A., 2003a. Diplopyrone, a new phytotoxic tetrahydropyranpyran-2-one produced by Diplodia mutila, a fungus pathogen of cork oak. Journal of Natural Products 66(2): 313–315. https://doi.org/10.1021/np020367c DOI: https://doi.org/10.1021/np020367c
  61. Evidente A., Sparapano L., Andolfi A., Bruno G., Motta A., 2003b. Sphaeropsidin F, a new pimarane diterpene produced in vitro by the cypress pathogen Sphaeropsis sapinea f. sp. cupressi. Australian Journal of Chemistry 56: 615–619. DOI: https://doi.org/10.1071/CH03037
  62. Evidente A., Fiore M., Bruno G., Sparapano L., Motta A., 2006. Chemical and biological characterisation of sapinopyridione, a phytotoxic 3,3,6-trisubstituted-2,4-pyridione produced by Sphaeropsis sapinea, a toxigenic pathogen of native and exotic conifers, and its derivatives. Phytochemistry 67(10): 1019–1028. https://doi.org/10.1016/j.phytochem.2006.03.017 DOI: https://doi.org/10.1016/j.phytochem.2006.03.017
  63. Evidente A., Maddau L., Scanu B., Andolfi A., Masi M., … Tuzi A., 2011. Sphaeropsidones, phytotoxic dimedone methyl ethers produced by Diplodia cupressi: a structure–activity relationship study. Journal of Natural Products 74: 757–763. https://doi.org/10.1021/np100837r DOI: https://doi.org/10.1021/np100837r
  64. Evidente A., Masi M., Linaldeddu B.T., Franceschini A., Scanu B., … Maddau L., 2012. Afritoxinones A and B, dihydrofuropyran-2-ones produced by Diplodia africana the causal agent of branch dieback on Juniperus phoenicea. Phytochemistry 77: 245–250. https://doi.org/10.1016/j.phytochem.2012.01.011 DOI: https://doi.org/10.1016/j.phytochem.2012.01.011
  65. Faedda R., D’Aquino S., Granata G., Pane A., Palma A., Sanzani S.M., Schena L., Cacciola S.O., 2016. Postharvest fungal diseases of cactus pear fruit in southern Italy. Acta Horticulturae 1144: 215–218. https://doi.org/10.17660/ActaHortic.2016.1144.31 DOI: https://doi.org/10.17660/ActaHortic.2016.1144.31
  66. Faedda R., Scuderi G., Licciardello G. Granata G., 2018. Neofusicoccum parvum causes stem canker of thornless blackberry in Italy. Phytopathologia Mediterranea 57(2): 351−354. https://doi.org/10.14601/Phytopathol_Mediterr-22301
  67. FAOSTAT. Food and Agriculture Organization of the United Nations, 2019. Available at: http://www.fao.org/faostat/en/#home. Accessed July 28, 2023.
  68. Ferrara C., Carlucci M., Grigoriadis E., Corona P., Salvati L., 2017. A comprehensive insight into the geography of forest cover in Italy: Exploring the importance of socioeconomic local contexts. Forest Policy and Economics 75: 12−22. https://doi.org/10.1016/j.forpol.2016.11.008 DOI: https://doi.org/10.1016/j.forpol.2016.11.008
  69. Fiorenza A., Aiello D., Costanzo M.B., Gusella G., Polizzi G., 2022. A new disease for Europe of Ficus microcarpa caused by Botryosphaeriaceae species. Plants 11: 727. https://doi.org/10.3390/plants11060727 DOI: https://doi.org/10.3390/plants11060727
  70. Fiorenza A., Gusella G., Vecchio L., Aiello D., Polizzi G., 2023. Diversity of Botryosphaeriaceae species associated with canker and dieback on Avocado (Persea americana) in Italy. Phytopathologia Mediterranea 62(1): 47−63. https://doi.org/10.36253/phyto-14057 DOI: https://doi.org/10.36253/phyto-14057
  71. Garibaldi A., Bertetti D., Amatulli M.T., Gullino M.L., 2011. First report of stem canker and die-back of rhododendron caused by Botryosphaeria parva in Italy. Journal of Plant Pathology 93(4). http://www.jstor.org/stable/41999550
  72. Garibaldi A., Bertetti D., Poli A., Gullino, M.L. 2012. First report of fruit rot in pear caused by Botryosphaeria dothidea in Italy. Plant Disease 96: 910. https://doi.org/10.1094/PDIS-02-12-0130-PDN DOI: https://doi.org/10.1094/PDIS-02-12-0130-PDN
  73. Gasparini P., Di Cosmo L., Floris A., 2022. Area and Characteristics of Italian Forests: Superficie e principali caratteristiche delle foreste italiane. In: Italian National Forest Inventory—Methods and results of the third survey: Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio—Metodi e Risultati della Terza Indagine, Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-98678-0_7 DOI: https://doi.org/10.1007/978-3-030-98678-0
  74. Gerin D., Dongiovanni C., De Miccolis Angelini R. M., Pollastro S., Faretra F. 2018. First report of Macrophomina phaseolina causing crown and root rot on strawberry in Italy. Plant Disease 102(9): 1857. https://doi.org/10.1094/PDIS-01-18-0191-PDN DOI: https://doi.org/10.1094/PDIS-01-18-0191-PDN
  75. Giambra S., Piazza G., Alves A., Mondello V., Berbegal M., … Burruano S., 2016. Botryosphaeriaceae species associated with diseased loquat trees in Italy and description of Diplodia rosacearum sp. nov. Mycosphere 7(7): 978–989. https://doi.org/10.5943/mycosphere/si/1b/9 DOI: https://doi.org/10.5943/mycosphere/si/1b/9
  76. Giambra S., Venturella G., Burruano S., Gargano M.L., 2019. First report of Diplodia africana on Grevillea robusta. Phytopathologia Mediterranea 58(3): 671–677. https://doi.org/10.14601/Phyto-10745
  77. Granata G., Faedda R., Sidoti A., 2011. First report of canker disease caused by Diplodia olivarum on carob tree in Italy. Plant Disease 95(6): 776. https://doi.org/10.1094/pdis-12-10-0870 DOI: https://doi.org/10.1094/PDIS-12-10-0870
  78. Grasso F.M., Granata G., 2010. First report of Botryosphaeria dothidea associated with dieback of aspen (Populus tremula) in Italy. Plant Pathology 59(4): 807–807. https://doi.org/10.1111/j.1365-3059.2010.02265.x DOI: https://doi.org/10.1111/j.1365-3059.2010.02265.x
  79. Guarnaccia V., Vitale A., Cirvilleri G., Aiello D., Susca A., … Polizzi G., 2016. Characterization and pathogenicity of fungal species associated with branch cankers and stem-end rot of avocado in Italy. European Journal of Plant Pathology 146: 963–976. https://doi.org/10.1007/s10658-016-0973-z DOI: https://doi.org/10.1007/s10658-016-0973-z
  80. Guarnaccia V., Crous P.W., 2017. Emerging citrus diseases in Europe caused by species of Diaporthe. IMA fungus 8: 317–334. https://doi.org/10.5598/imafungus.2017.08.02.07 DOI: https://doi.org/10.5598/imafungus.2017.08.02.07
  81. Guarnaccia V., Martino I., Tabone G., Brondino L., Gullino M.L., 2020a. Fungal pathogens associated with stem blight and dieback of blueberry in northern Italy. Phytopathologia Mediterranea 59(2): 229–245. https://doi.org/10.14601/Phyto-11278
  82. Guarnaccia V., Polizzi G., Papadantonakis N., Gullino M.L., 2020b. Neofusicoccum species causing branch cankers on avocado in Crete (Greece). Journal of Plant Pathology 102: 1251–1255. https://doi.org/10.1007/s42161-020-00618-y DOI: https://doi.org/10.1007/s42161-020-00618-y
  83. Guarnaccia V., Kraus C., Markakis E., Alves A., Armengol J., … Gramaje D., 2023. Fungal trunk diseases of fruit trees in Europe: pathogens, spread and future directions. Phytopathologia Mediterranea 61: 563–599. https://doi.org/10.36253/phyto-14167 DOI: https://doi.org/10.36253/phyto-14167
  84. Gusella G., Aiello, D., Polizzi G., 2020a. First report of leaf and twig blight of Indian hawthorn (Rhaphiolepis indica) caused by Neofusicoccum parvum in Italy. Journal of Plant Pathology 102: 275. https://doi.org/10.1007/s42161-019-00412-5 DOI: https://doi.org/10.1007/s42161-019-00412-5
  85. Gusella G., Giambra S., Conigliaro G., Burruano S., Polizzi G., 2020b. Botryosphaeriaceae species causing canker and dieback of English walnut (Juglans regia) in Italy. Forest Pathology 51: e12661. https://doi.org/10.1111/efp.12661 DOI: https://doi.org/10.1111/efp.12661
  86. Gusella G., Costanzo M.B., Aiello D., Polizzi G., 2021. Characterization of Neofusicoccum parvum causing canker and dieback on Brachychiton species. European Journal of Plant Pathology 161: 999–1005. https://doi.org/10.1007/s10658-021-02379-5 DOI: https://doi.org/10.1007/s10658-021-02379-5
  87. Gusella G., Lawrence D. P., Aiello D., Luo Y., Polizzi G., Michailides T.J., 2022. Etiology of Botryosphaeria panicle and shoot blight of pistachio (Pistacia vera) caused by Botryosphaeriaceae in Italy. Plant Disease 106(4): 1192–1202. https://doi.org/10.1094/pdis-08-21-1672-re DOI: https://doi.org/10.1094/PDIS-08-21-1672-RE
  88. Gusella G., Di Pietro C., Leonardi G. R., Aiello D., Polizzi G. 2023a. Canker and dieback of camphor tree (Cinnamomum camphora) caused by Botryosphaeriaceae in Italy. Journal of Plant Pathology 1-7. https://doi.org/10.1007/s42161-023-01517-8 DOI: https://doi.org/10.1007/s42161-023-01517-8
  89. Gusella G., Di Pietro C., Vecchio L., Campo G., Polizzi G. 2023b. Branch canker and dieback of Meryta denhamii caused by Neofusicoccum parvum and Neoscytalidium dimidiatum in Italy. Australasian Plant Disease Notes 18(1): 31. https://doi.org/10.1007/s13314-023-00515-0 DOI: https://doi.org/10.1007/s13314-023-00515-0
  90. Hyde K.D., Norphanphoun C., Abreu V.P., Bazzicalupo A., Chethana K.W.T., … Mortimer P.E., 2017. Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Diversity 87: 1–235. https://doi.org/10.1007/s13225-017-0391-3 DOI: https://doi.org/10.1007/s13225-017-0391-3
  91. Infantino A., Balmas V., Schianchi N., Mocali S., Chiellini C., … Chilosi G., 2021. Diversity of soil-borne fungal species associated to root rot and vine decline of melon in Sardinia (Italy). Journal of Plant Pathology 103(2): 42–432. https://doi.org/10.1007/s42161-021-00774-9 DOI: https://doi.org/10.1007/s42161-021-00774-9
  92. Ismail A.M., Cirvilleri G., Lombard L., Crous P.W., Groenewald J.Z., Polizzi G., 2013. Characterisation of Neofusicoccum species causing mango dieback in Italy. Journal of Plant Pathology 95: 549–557. http://www.jstor.org/stable/23721576
  93. Jayawardena R.S., Purahong W., Zhang W., Wubet T., Li X.H., … Yan J., 2018. Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Diversity 90: 1–84. https://doi.org/10.1007/s13225-018-0398-4 DOI: https://doi.org/10.1007/s13225-018-0398-4
  94. Johnson J.W., Gleason M.L., Parker S.K., Provin E.B., Iles J.K., Flynn P.H., 1997. Duration of water stress affects development of Sphaeropsis canker on Scots pine. Journal of Arnold Arboretum 23: 73–76. DOI: https://doi.org/10.48044/jauf.1997.009
  95. Kee Y.J., Zakaria L., Mohd M.H., 2019. Lasiodiplodia species associated with Sansevieria trifasciata leaf blight in Malaysia. Journal of General Plant Pathology 85: 66–71. https://doi.org/10.1007/s10327-018-0814-3 DOI: https://doi.org/10.1007/s10327-018-0814-3
  96. Lazzizera C., Frisullo S., Alves A., Lopes J., Phillips A.J.L., 2008a. Phylogeny and morphology of Diplodia species on olives in southern Italy and description of Diplodia olivarum sp. nov. Fungal Diversity 31: 63–71.
  97. Lazzizera C., Frisullo S., Alves A., Phillips A.J.L., 2008b. Morphology, phylogeny and pathogenicity of Botryosphaeria and Neofusicoccum species associated with drupe rot of olives in southern Italy. Plant Pathology 57(5): 948–956. https://doi:10.1111/j.1365-3059.2008.01842.x DOI: https://doi.org/10.1111/j.1365-3059.2008.01842.x
  98. Leonardi G.R., Aiello D., Camilleri G., Piattino, V., Polizzi G., Guarnaccia V. 2023. A new disease of kumquat (Fortunella margarita) caused by Colletotrichum karsti: twig and branch dieback. Phytopathologia Mediterranea 62(3): 333–348. DOI: https://doi.org/10.36253/phyto-14544
  99. Li W., Liu J., Bhat D.J., Camporesi E., Xu J., Hyde K.D., 2014. Introducing the novel species, Dothiorella symphoricarposicola, from snowberry in Italy. Cryptogamie Mycologie 35(3): 257–270. https://doi.org/10.7872/crym.v35.iss3.2014.257 DOI: https://doi.org/10.7872/crym.v35.iss3.2014.257
  100. Li W.J., McKenzie E.H., Liu J.K.J., Bhat D.J., Dai D.Q., … Hyde K.D., 2020. Taxonomy and phylogeny of hyaline-spored Coelomycetes. Fungal Diversity 100(1): 279–801. https://doi.org/10.1007/s13225-020-00440-y DOI: https://doi.org/10.1007/s13225-020-00440-y
  101. Linaldeddu B.T., Maddau L., Franceschini A., 2006a. First report of shoot blight caused by Diplodia scrobiculata on Pinus radiata trees in Italy. Journal of Plant Pathology 88(3): S66.
  102. Linaldeddu B.T., Luque J., Franceschini A., 2006b. Occurrence of Botryosphaeria obtusa in declining cork oak trees in Italy. Journal of Plant Pathology 88(3): S66.
  103. Linaldeddu B.T., Franceschini A., Luque J., Phillips A.J.L., 2007. First report of canker disease caused by Botryosphaeria parva on cork oak trees in Italy. Plant Disease 91(3): 324. https://doi.org/10.1094/pdis-91-3-0324a DOI: https://doi.org/10.1094/PDIS-91-3-0324A
  104. Linaldeddu B.T., Scanu B., Schiaffino A., Zanda A., Franceschini A., 2009. First report of Botryosphaeria dothidea causing canker and branch dieback on Quercus suber in Italy. Journal of Plant Pathology 91(4): S104–S104.
  105. Linaldeddu B.T., Scanu B., Franceschini A., 2010a. First report of Diplodia scrobiculata causing canker and branch dieback on strawberry tree (Arbutus unedo) in Italy. Plant Disease 94(7): 919. https://doi.org/10.1094/PDIS-94-7-0919C DOI: https://doi.org/10.1094/PDIS-94-7-0919C
  106. Linaldeddu B.T., Scanu B., Schiaffino A., Serra S., 2010b. First report of Neofusicoccum australe associated with grapevine cordon dieback in Italy. Phytopathologia Mediterranea 49(3): 417–420. https://doi.org/10.14601/Phytopathol_Mediterr-8727
  107. Linaldeddu B.T., Scanu B., Maddau L., Franceschini A., 2011a. Diplodia africana causing dieback on Juniperus phoenicea: A new host and first report in the northern hemisphere. Phytopathologia Mediterranea 50(3): 473–477. https://doi.org/10.14601/Phytopathol_Mediterr-9546
  108. Linaldeddu B. T., Sirca C., Spano D., Franceschini A., 2011b. Variation of endophytic cork oak‐associated fungal communities in relation to plant health and water stress. Forest Pathology 41(3): 193–201. https://doi.org/10.1111/j.1439-0329.2010.00652.x DOI: https://doi.org/10.1111/j.1439-0329.2010.00652.x
  109. Linaldeddu B.T., Franceschini A., Alves A., Phillips A.J.L., 2013. Diplodia quercivora sp. nov.: A new species of Diplodia found on declining Quercus canariensis trees in Tunisia. Mycologia 105: 1266−1274. https://doi.org/10.3852/12-370 DOI: https://doi.org/10.3852/12-370
  110. Linaldeddu B.T., Scanu B., Maddau L., Franceschini A., 2014. Diplodia corticola and Phytophthora cinnamomi: The main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathology 44(3): 191–200. https://doi.org/10.1111/efp.12081 DOI: https://doi.org/10.1111/efp.12081
  111. Linaldeddu B.T., Deidda A., Scanu B., Franceschini A., Serra S., … Phillips A.J.L., 2015a. Diversity of Botryosphaeriaceae species associated with grapevine and other woody hosts in Italy, Algeria and Tunisia, with descriptions of Lasiodiplodia exigua and Lasiodiplodia mediterranea sp. nov. Fungal Diversity 71: 201–214. https://doi.org/10.3390/d15070800 DOI: https://doi.org/10.1007/s13225-014-0301-x
  112. Linaldeddu B.T., Scanu B., Seddaiu S., Deidda A., Maddau L., Franceschini A., 2015b. A new disease of Erica arborea in Italy caused by Neofusicoccum luteum. Phytopathologia Mediterranea 54(1): 124–127. http://www.jstor.org/stable/43872387
  113. Linaldeddu B.T., Alves A., Phillips A.J.L., 2016a. Sardiniella urbana gen. et sp. nov., a new member of the Botryosphaeriaceae isolated from declining Celtis australis trees in Sardinian streetscapes. Mycosphere 7(7): 893–905. https://doi.org/10.5943/mycosphere/si/1b/5 DOI: https://doi.org/10.5943/mycosphere/si/1b/5
  114. Linaldeddu B.T., Deidda A., Scanu B., Franceschini A., Alves A., … Phillips A.J.L., 2016b. Phylogeny, morphology and pathogenicity of Botryosphaeriaceae, Diatrypaceae and Gnomoniaceae associated with branch diseases of hazelnut in Sardinia (Italy). European Journal of Plant Pathology 146(2): 259–279. https://doi.org/10.1007/s10658-016-0912-z DOI: https://doi.org/10.1007/s10658-016-0912-z
  115. Linaldeddu B.T., Maddau L., Franceschini A., Alves A., Phillips A.J.L., 2016c. Botryosphaeriaceae species associated with lentisk dieback in Italy and description of Diplodia insularis sp. nov. Mycosphere 7(7): 962–977. https://doi.org/10.5943/mycosphere/si/1b/8 DOI: https://doi.org/10.5943/mycosphere/si/1b/8
  116. Linaldeddu B.T., Bregant C., Ruzzon B., Montecchio L., 2020a. Coniella granati and Phytophthora palmivora: The main pathogens involved in pomegranate dieback and mortality in north-eastern Italy. Italian Journal of Mycology 49(2): 92–100. http://orcid.org/0000-0003-2428-9905
  117. Linaldeddu B.T., Bottecchia F., Bregant C., Maddau L., Montecchio L., 2020b. Diplodia fraxini and Diplodia subglobosa: the main species associated with cankers and dieback of Fraxinus excelsior in north-eastern Italy. Forests 11(8): 883. https://doi.org/10.3390/f11080883 DOI: https://doi.org/10.3390/f11080883
  118. Liu J.K., Phookamsak R., Doilom M., Wikee S., Li Y.M., … Hyde K.D., 2012. Towards a natural classification of Botryosphaeriales. Fungal Diversity 57: 149–210. https://doi.org/10.1007/s13225-012-0207-4 DOI: https://doi.org/10.1007/s13225-012-0207-4
  119. Liu J.K., Hyde K.D., Jones E.B., Ariyawansa H.A., Bhat D.J., … Camporesi E. 2015. Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72(1): 1–197. https://doi.org/10.1007/s13225-015-0324-y DOI: https://doi.org/10.1007/s13225-015-0324-y
  120. Lopes A., Phillips A.J.L., Alves A., 2017. Mating type genes in the genus Neofusicoccum: Mating strategies and usefulness in species delimitation. Fungal Biology 121(4): 394–404. https://doi.org/10.1016/j.funbio.2016.08.011 DOI: https://doi.org/10.1016/j.funbio.2016.08.011
  121. Lopes A., Linaldeddu B.T., Phillips A.J.L., Alves A., 2018. Mating type gene analyses in the genus Diplodia: from cryptic sex to cryptic species. Fungal Biology 122(7): 629–638. https://doi.org/10.1016/j.funbio.2018.03.012 DOI: https://doi.org/10.1016/j.funbio.2018.03.012
  122. Lorenzini M., Zapparoli G., 2018. Identification of Pestalotiopsis bicilita, Diplodia seriata and Diaporthe eres causing fruit rot in withered grapes in Italy. European Journal of Plant Pathology 151(4): 1089–1093. https://doi.org/10.1007/s10658-017-1416-1 DOI: https://doi.org/10.1007/s10658-017-1416-1
  123. Luchi N., Oliveira Longa C.M., Danti R., Capretti P., Maresi G., 2014. Diplodia sapinea: The main fungal species involved in the colonization of pine shoots in Italy. Forest Pathology 44(5): 372–381. https://doi.org/10.1111/efp.12109 DOI: https://doi.org/10.1111/efp.12109
  124. Luo Y., Gu S., Felts D., Puckett R.D., Morgan D.P., Michailides, T.J., 2017. Development of qPCR systems to quantify shoot infections by canker causing pathogens in stone fruits and nut crops. Journal of Applied Microbiology 122(2): 416–428. https://doi.org/10.1111/jam.13350 DOI: https://doi.org/10.1111/jam.13350
  125. Luo Y., Lichtemberg P.S., Niederholzer F.J., Lightle D.M., Felts D.G., Michailides T.J., 2019. Understanding the process of latent infection of canker-causing pathogens in stone fruit and nut crops in California. Plant Disease 103(9): 2374–2384. https://doi.org/10.1094/PDIS-11-18-1963-RE DOI: https://doi.org/10.1094/PDIS-11-18-1963-RE
  126. Luo Y., Niederholzer F.J.A., Felts D.G., Puckett R.D., Michailides T.J., 2020. Inoculum quantification of canker causing pathogens in prune and walnut orchards using real time PCR. Journal of Applied Microbiology 129(5): 1337–1348. https://doi.org/10.1111/jam.14702 DOI: https://doi.org/10.1111/jam.14702
  127. Luo Y., Ma R., Barrera E., Gusella G., Michailides T.J., 2022. Effects of temperature on development of canker-causing pathogens in almond and prune. Plant Disease 106(9): 2424–2432. https://doi.org/10.1094/pdis-01-22-0048-re DOI: https://doi.org/10.1094/PDIS-01-22-0048-RE
  128. Ma Z., Boehm E.W.A., Luo Y., Michailides T.J., 2001. Population structure of Botryosphaeria dothidea from pistachio and other hosts in California. Phytopathology 91: 665–672. https://doi.org/10.1094/phyto.2001.91.7.665 DOI: https://doi.org/10.1094/PHYTO.2001.91.7.665
  129. Manca D., Bregant C., Maddau L., Pinna C., Montecchio L., Linaldeddu B.T., 2020. First report of canker and dieback caused by Neofusicoccum parvum and Diplodia olivarum on oleaster in Italy. Italian Journal of Mycology 49: 85–91. https://doi.org/10.6092/issn.2531-7342/11048
  130. Manetti G., Brunetti A., Lumia V., Sciarroni L., Marangi P., … Pilotti M., 2023. Identification and Characterization of Neofusicoccum stellenboschiana in Branch and Twig Dieback-Affected Olive Trees in Italy and Comparative Pathogenicity with N. mediterraneum. Journal of Fungi 9(3): 292. https://doi.org/10.3390/jof9030292 DOI: https://doi.org/10.3390/jof9030292
  131. Mang S.M., Marcone C., Maxim A., Camele I., 2022. Investigations on fungi isolated from apple trees with dieback symptoms from Basilicata region (southern Italy). Plants 11(10): 1374. https://doi.org/10.3390/plants11101374 DOI: https://doi.org/10.3390/plants11101374
  132. Maresi G, Lucchi N., Pinzani P., Pazzagli M., Capretti P., 2007. Detection of Diplodia pinea in asymptomatic pine shoots and its relation to the normalized insolation index. Forest Pathology 37(4): 272–280. https://doi.org/10.1111/j.1439-0329.2007.00506.x DOI: https://doi.org/10.1111/j.1439-0329.2007.00506.x
  133. Marinelli E., Orzali L., Scalercio S., Riccioni L., 2012. First report of Botryosphaeria dothidea causing fruit rot of quince in Italy. Journal of Plant Pathology 94: 4. https://doi.org/10.1007/s42161-023-01314-3 DOI: https://doi.org/10.1007/s42161-023-01314-3
  134. Marin-Felix Y., Groenewald J.Z., Cai L., Chen Q., Marincowitz, … Crous P.W., 2017. Genera of phytopathogenic fungi: GOPHY 1. Study in Mycology 86: 99–216. https://doi.org/10.1016/j.simyco.2019.05.001 DOI: https://doi.org/10.1016/j.simyco.2017.04.002
  135. Marino G., Marra F.P., 2019. Horticultural management of Italian Pistachio orchard systems: Current limitations and future prospective. Italus Hortus 26: 14–26. https://doi.org/10.26353/j.itahort/2019.2.1426 DOI: https://doi.org/10.26353/j.itahort/2019.2.1426
  136. Martino I., Agustí-Brisach C., Nari L., Gullino M.L., Guarnaccia V., 2023. Characterization and pathogenicity of fungal species associated with dieback of apple trees in Northern Italy. Plant Disease in press. https://doi.org/10.1094/PDIS-04-23-0645-RE DOI: https://doi.org/10.1094/PDIS-04-23-0645-RE
  137. Masi M., Maddau L., Linaldeddu B.T., Cimmino A., D’Amico W., … Evidente A., 2016. Bioactive secondary metabolites produced by the oak pathogen Diplodia corticola. Journal of Agricultural and Food Chemistry 64: 217–225. https://doi.org/10.1021/acs.jafc.5b05170 DOI: https://doi.org/10.1021/acs.jafc.5b05170
  138. Masi M., Maddau L., Linaldeddu B.T., Scanu B., Evidente A., Cimmino A., 2018a. Bioactive metabolites from pathogenic and endophytic fungi of forest trees. Current Medicinal Chemistry 25(2): 208–252. https://doi.org/10.2174/0929867324666170314145159 DOI: https://doi.org/10.2174/0929867324666170314145159
  139. Masi M., Cimmino A., Reveglia P., Mugnai L., Surico G., Evidente A., 2018b. Advances on fungal phytotoxins and their role in grapevine trunk diseases. Journal of Agricultural and Food Chemistry 66: 5948–5958. https://doi.org/10.1021/acs.jafc.8b00773 DOI: https://doi.org/10.1021/acs.jafc.8b00773
  140. Masi M., Reveglia P., Baaijens-Billones R., Górecki M., Pescitelli G., … Evidente A., 2020a. Phytotoxic metabolites from three Neofusicoccum species causal agents of Botryosphaeria dieback in Australia, luteopyroxin, neoanthraquinone, and luteoxepinone, a disubstituted furo-α-pyrone, a hexasubstituted anthraquinone, and a trisubstituted oxepi-2-one from Neofusicoccum luteum. Journal of Natural Products 83(2): 453–460. https://doi.org/10.1021/acs.jnatprod.9b01057 DOI: https://doi.org/10.1021/acs.jnatprod.9b01057
  141. Masi M., Aloi F., Nocera P., Cacciola S.O., Surico G., Evidente A., 2020b. Phytotoxic metabolites isolated from Neufusicoccum batangarum, the causal agent of the scabby canker of cactus pear (Opuntia ficus-indica L.). Toxins 12(2): 126. https://doi.org/10.3390/toxins12020126 DOI: https://doi.org/10.3390/toxins12020126
  142. Masi M., Di Lecce R., Marsico G., Linaldeddu B.T., Maddau L., … Evidente A., 2021. Pinofuranoxins A and B, bioactive trisubstituted furanones produced by the invasive pathogen Diplodia sapinea. Journal of Natural Products 84(9): 2600–2605. https://doi.org/10.1021/acs.jnatprod.1c00365 DOI: https://doi.org/10.1021/acs.jnatprod.1c00365
  143. Masi M., Evidente A., 2021. Sphaeropsidin A: A pimarane diterpene with interesting biological activities and promising practical applications. ChemBioChem 22(23): 3263–3269. https://doi.org/10.1002/cbic.202100283 DOI: https://doi.org/10.1002/cbic.202100283
  144. Masi M., Di Lecce R., Calice U., Linaldeddu B.T., Maddau L., Superchi S., Evidente A., 2022. Diplofuranoxin, a disubstituted dihydrofuranone, was produced together with sphaeropsidin A and epi-sphaeropsidone by Diplodia subglobosa, an emerging ash (Fraxinus excelsior L.) pathogen in Europe. Phytochemistry 202: 113302. https://doi.org/10.1016/j.phytochem.2022.113302 DOI: https://doi.org/10.1016/j.phytochem.2022.113302
  145. Mathieu V., Chantôme A., Lefranc F., Cimmino A., Miklos W., … Kiss R., 2015. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cellular and Molecular Life Sciences 72(19): 3731–3746. https://doi.org/10.1007/s00018-015-1902-6 DOI: https://doi.org/10.1007/s00018-015-1902-6
  146. Mayorquin J.S., Wang D.H., Twizeyimana M., Eskalen A., 2016. Identification, distribution, and pathogenicity of Diatrypaceae and Botryosphaeriaceae associated with Citrus branch canker in the southern California desert. Plant Disease 100: 2402–2413. https://doi.org/10.1094/pdis-03-16-0362-re DOI: https://doi.org/10.1094/PDIS-03-16-0362-RE
  147. Mehl J., Wingfield M. J., Roux J., Slippers B., 2017. Invasive everywhere? Phylogeographic analysis of the globally distributed tree pathogen Lasiodiplodia theobromae. Forests 8: 1–22. https://doi.org/10.3390/f8050145 DOI: https://doi.org/10.3390/f8050145
  148. Michailides T.J., 1991. Pathogenicity, distribution, sources of inoculum, and infection courts of Botryosphaeria dothidea on pistachio. Phytopathology 81: 566–573. https://doi.org/10.1094/Phyto-81-566 DOI: https://doi.org/10.1094/Phyto-81-566
  149. Michailides T.J., Morgan, D.P., 2016. Association of Botryosphaeria panicle and shoot blight of pistachio with injuries of fruit caused by Hemiptera insects and birds. Plant Disease 100(7): 1405–1413. https://doi.org/10.1094/PDIS-09-15-1077-RE DOI: https://doi.org/10.1094/PDIS-09-15-1077-RE
  150. Mondello V., Lo Piccolo S., Conigliaro G., Alfonzo A., Torta L., Burruano S., 2013. First report of Neofusicoccum vitifusiforme and presence of the Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevine in Sicily (Italy). Phytopathologia Mediterranea 52: 388–396.
  151. Moral J., Munoz-Dıez, C., Gonzalez N., Trapero A., Michailides T.J., 2010. Characterization and pathogenicity of Botryosphaeriaceae species collected from olive and other hosts in Spain and California. Phytopathology 100: 1340–1351. https://doi.org/10.1094 / PHYTO-12-09-0343 DOI: https://doi.org/10.1094/PHYTO-12-09-0343
  152. Moral J., Morgan D., Trapero A., Michailides T.J., 2019. Ecology and epidemiology of diseases of nut crops and olives caused by Botryosphaeriaceae fungi in California and Spain. Plant Disease 103: 1809–1827. https://doi.org/10.1094/PDIS-03-19-0622-FE DOI: https://doi.org/10.1094/PDIS-03-19-0622-FE
  153. Moricca S., Uccello A., Zini E., Campana F., Gini R., … Ragazzi A., 2008. Spread and virulence of Botryosphaeria dothidea on broadleaved trees in urban parks of northern Italy. Journal of Plant Pathology 90: 452–452.
  154. Moricca S., Uccello A., Ginetti B., Ragazzi A., 2012. First report of Neofusicoccum parvum associated with bark canker and dieback of Acer pseudoplatanus and Quercus robur in Italy. Plant Disease 96(11): 1699. https://doi.org/10.1094/pdis-06-12-0543-pdn DOI: https://doi.org/10.1094/PDIS-06-12-0543-PDN
  155. Moricca S., Linaldeddu B.T., Ginetti B., Scanu B., Franceschini A., Ragazzi A., 2016. Endemic and emerging pathogens threatening cork oak trees: management options for conserving a unique forest ecosystem. Plant Disease 100(11): 2184–2193. https://doi.org/10.1094/PDIS-03-16-0408-FE DOI: https://doi.org/10.1094/PDIS-03-16-0408-FE
  156. Moyo P., Allsopp E., Roets F., Moster L., Halleen F., 2014. Arthropods vector grapevine trunk disease pathogens. Phytopathology 104: 1063–1069. https://doi.org/10.1094/PHYTO-11-13-0303-R DOI: https://doi.org/10.1094/PHYTO-11-13-0303-R
  157. Ni H.F., Liou R.F., Hung T.H., Chen R.S., Yang H.R., 2010. First report of fruit rot disease of mango caused by Botryosphaeria dothidea and Neofusicoccum mangiferae in Taiwan. Plant Disease 94(1): 128. https://doi.org/10.1094/pdis-94-1-0128c DOI: https://doi.org/10.1094/PDIS-94-1-0128C
  158. Nicoletti R., Ferranti P., Caira S., Misso G., Castellano M., … Caraglia M., 2014. Myrtucommulone production by a strain of Neofusicoccum australe endophytic in myrtle (Myrtus communis). World Journal of Microbiology and Biotechnology 30(3): 1047–1052. https://doi.org/10.1007/s11274-013-1523-x DOI: https://doi.org/10.1007/s11274-013-1523-x
  159. Panzavolta T., Panichi A., Bracalini M., Croci F., Benigno A., … Moricca S., 2018. Tree pathogens and their insect-mediated transport: Implications for oak tree die-off in a natural park area. Global Ecology and Conservation 15: e00437. https://doi.org/10.1016/j.gecco.2018.e00437 DOI: https://doi.org/10.1016/j.gecco.2018.e00437
  160. Pavlic D., B. Slippers, T.A. Coutinho and M.J. Wingfield, 2007. Botryosphaeriaceae occurring on native Syzygium cordatum in South Africa and their potential threat to Eucalyptus. Plant Pathology 56: 624–636. https://doi.org/10.1111/j.1365-3059.2007.01608.x DOI: https://doi.org/10.1111/j.1365-3059.2007.01608.x
  161. Pavlic-zupanc D., Piškur B., Slippers B., Wingfield M.J., Jurc D., 2015. Molecular and morphological characterization of Dothiorella species associated with dieback of Ostrya carpinifolia in Slovenia and Italy. Phytopathologia Mediterranea 54(2): 222−231. https://doi.org/10.14601/Phytopathol_Mediterr-15011
  162. Pérez-Roncal C., Arazuri S., Lopez-Molina C., Jarén C., Santesteban L.G., López-Maestresalas A., 2022. Exploring the potential of hyperspectral imaging to detect Esca disease complex in asymptomatic grapevine leaves. Computers and Electronics in Agriculture 196: 1–12. https://doi.org/10.1016/j.compag.2022.106863 DOI: https://doi.org/10.1016/j.compag.2022.106863
  163. Phillips A.J.L., Alves A., Correia A., Luque J., 2005. Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia 97(2): 513–529. https://doi.org/10.3852/mycologia.97.2.513 DOI: https://doi.org/10.3852/mycologia.97.2.513
  164. Phillips A.J.L., Alves A., Pennycook S.R., Johnston P.R., Ramaley A., … Crous P.W. 2008. Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia 21: 29–55. DOI: https://doi.org/10.3767/003158508X340742
  165. Phillips A.J.L., Alves A., Abdollahzadeh J., Slippers B., Wingfield M.J., … Crous P.W., 2013. The Botryosphaeriaceae: Genera and species known from culture. Study in Mycology 76: 51–167. https://doi.org/10.3114/sim0021 DOI: https://doi.org/10.3114/sim0021
  166. Phillips A.J.L., Hyde K.D., Alves A., Liu J.K.J., 2019. Families in Botryosphaeriales: A phylogenetic, morphological and evolutionary perspective. Fungal Diversity 94: 1–22. https://doi.org/10.1007/s13225-018-0416-6 DOI: https://doi.org/10.1007/s13225-018-0416-6
  167. Pinna C., Linaldeddu B.T., Deiana V., Maddau L., Montecchio L., Lentini A., 2019. Plant pathogenic fungi associated with Coraebus florentinus (Coleoptera: Buprestidae) attacks in declining oak forests. Forests 10: 488. DOI: https://doi.org/10.3390/f10060488
  168. Piškur B., Pavlic D., Slippers B., Ogris N., Maresi G., … Jurc D., 2011. Diversity and pathogenicity of Botryosphaeriaceae on declining Ostrya carpinifolia in Slovenia and Italy following extreme weather conditions. European Journal of Forest Research 130: 235–249. https://doi.org/10.1007/s10342-010-0424-x DOI: https://doi.org/10.1007/s10342-010-0424-x
  169. Polizzi G., Aiello D., Vitale A., Giuffrida F., Groenewald J.Z., Crous P.W., 2009. First report of shoot blight, canker, and gummosis caused by Neoscytalidium dimidiatum on Citrus in Italy. Plant Disease 93(11): 1215. DOI: https://doi.org/10.1094/PDIS-93-11-1215A
  170. Polizzi G., Di Pietro C., Gusella G., Ismail A.M., Aiello D., 2023. First report of seedling stem blight of mango caused by Neofusicoccum parvum in Italy. Plant Disease 107: 1630. https://doi.org/10.1094/PDIS-07-22-1652-PDN DOI: https://doi.org/10.1094/PDIS-07-22-1652-PDN
  171. Poudel B., Shivas R.G., Adorada D.L., Barbetti M.J., Bithell S.L., … Vaghefi N., 2021. Hidden diversity of Macrophomina associated with broadacre and horticultural crops in Australia. European Journal of Plant Pathology 161(1): 1–23. https://doi.org/10.1007/s10658-021-02300-0 DOI: https://doi.org/10.1007/s10658-021-02300-0
  172. Pusztahelyi T., Holb I.J., Pócsi I., 2015. Secondary metabolites in fungus-plant interactions. Frontiers in Plant Science 6: 573. https://doi.org/10.3389/fpls.2015.00573 DOI: https://doi.org/10.3389/fpls.2015.00573
  173. Quaglia M., Moretti C., Buonaurio R., 2014. Molecular characterization of Diplodia seriata, a new pathogen of Prunus laurocerasus in Italy. Phytoparasitica 42(2): 189–197. https://doi.org/10.1007/s12600-013-0350-9 DOI: https://doi.org/10.1007/s12600-013-0350-9
  174. Ragazzi A., Moricca S., Dellavalle I., 1999. Interactions between Quercus spp. and Diplodia mutila under water stress conditions / Interaktionen zwischen Quercus spp. und Diplodia mutila unter Wasserstreßbedingungen. Zeitschrift Für Pflanzenkrankheiten Und Pflanzenschutz / Journal of Plant Diseases and Protection 106(5): 495–500. http://www.jstor.org/stable/43215321
  175. Raimondo M.L., Carlucci A., Ciccarone C., Sadallah A., Lops F., 2019. Identification and pathogenicity of lignicolous fungi associated with grapevine trunk diseases in southern Italy. Phytopathologia Mediterranea 58(3): 639–662. https://doi.org/10.14601/Phyto-10742
  176. Rathnayaka A.R., Chetana K.T., Phillips A.J.L., Jones E.G., 2022. Two new species of Botryosphaeriaceae (Botryosphaeriales) and new host/geographical records. Phytotaxa 564(1): 8–38. https://doi.org/10.11646/phytotaxa.564.1.2 DOI: https://doi.org/10.11646/phytotaxa.564.1.2
  177. Reveglia P., Savocchia S., Billones-Baaijens R., Masi M., Cimmino A., Evidente A., 2018a. Diploquinones A and B, two new phytotoxic tetrasubstituted 1,4-naphthoquinones from Diplodia mutila, a causal agent of grapevine trunk disease. Journal of Agricultural and Food Chemistry 66(45): 11968–11973. https://doi.org/10.1021/acs.jafc.8b05004 DOI: https://doi.org/10.1021/acs.jafc.8b05004
  178. Reveglia P., Savocchia S., Billones-Baaijens R., Cimmino A., Evidente A., 2018b. Isolation of phytotoxic phenols and characterization of a new 5-hydroxymethyl-2-isopropoxyphenol from Dothiorella vidmadera, a causal agent of grapevine trunk disease. Journal of Agricultural and Food Chemistry 66(8): 1760–1764. https://doi.org/10.1021/acs.jafc.7b05248 DOI: https://doi.org/10.1021/acs.jafc.7b05248
  179. Reveglia P., Savocchia S., Billones-Baaijens R., Masi M., Cimmino A., Evidente A., 2019. Phytotoxic metabolites by nine species of Botryosphaeriaceae involved in grapevine dieback in australia and identification of those produced by Diplodia mutila, Diplodia seriata, Neofusicoccum australe and Neofusicoccum luteum. Natural Product Research 33(15): 2223–2229. https://doi.org/10.1080/14786419.2018.1497631 DOI: https://doi.org/10.1080/14786419.2018.1497631
  180. Reveglia P., Savocchia S., Billones-Baaijens R., Masi M., Evidente A., 2020. Spencertoxin and spencer acid, new phytotoxic derivatives of diacrylic acid and dipyridinbutan-1,4-diol produced by Spencermartinsia viticola, a causal agent of grapevine Botryosphaeria dieback in Australia. Arabian Journal of Chemistry 13(1): 1803–1808. https://doi.org/10.1016/j.arabjc.2018.01.014 DOI: https://doi.org/10.1016/j.arabjc.2018.01.014
  181. Riccioni L., Valente M.T., Di Giambattista G., 2017. First report of Neofusicoccum parvum causing shoot blight and plant decay on pomegranate in Tarquinia, Italy. Journal of Plant Pathology 99(1). https://doi.org/10.4454/jpp.v99i1.3805
  182. Robert-Siegwald G., Vallet J., Abou-Mansour E., Xu J., Rey P., … Lebrun M.H., 2017. Draft genome sequence of Diplodia seriata F98.1, a fungal species involved in grapevine trunk diseases. Genome Announcements 5: e00061-17. https://doi.org/10.1128%2FgenomeA.00061-17 DOI: https://doi.org/10.1128/genomeA.00061-17
  183. Romero-Cuadrado L., López-Herrera C.J., Aguado A., Capote N., 2023. Duplex Real-Time PCR assays for the simultaneous detection and quantification of Botryosphaeriaceae species causing canker diseases in woody crops. Plants 12(11): 2205. https://doi.org/10.3390/plants12112205 DOI: https://doi.org/10.3390/plants12112205
  184. Roscetto E., Masi M., Esposito M., Di Lecce R., Delicato A., … Catania M.R., 2020. Anti-biofilm activity of the fungal phytotoxin sphaeropsidin A against clinical isolates of antibiotic-resistant bacteria. Toxins 12(7): 444. https://doi.org/10.3390/toxins12070444 DOI: https://doi.org/10.3390/toxins12070444
  185. Rovesti L., Montermini A., 1987. Un deperimento della vite causato da Sphaeropsis malorum diffuso in provincia di Reggio Emilia. Informatore Fitopatologico 1: 59–61.
  186. Sacristán S., García-Arenal F., 2008. The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology 9(3): 369–384. https://doi.org/10.1111/j.1364-3703.2007.00460.x DOI: https://doi.org/10.1111/j.1364-3703.2007.00460.x
  187. Sakalidis M.L., Slippers B., Wingfield B.D., St. J. Hardy G.E., Burgess T.I., 2013. The challenge of understanding the origin, pathways and extent of fungal invasions: global populations of the Neofusicoccum parvum - N. ribis species complex. Diversity and Distribution 19: 873–883. https://doi.org/10.1111/ddi.12030 DOI: https://doi.org/10.1111/ddi.12030
  188. Salvatore M.M., Alves A., Andolfi A., 2021. Secondary metabolites produced by Neofusicoccum species associated with plants: A Review. Agriculture 11: 149. https://doi.org/10.3390/agriculture11020149 DOI: https://doi.org/10.3390/agriculture11020149
  189. Sandoval-Denis M., Guarnaccia V., Polizzi G., Crous P.W., 2018. Symptomatic Citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Persoonia 40: 1–25. https://doi.org/10.3767/persoonia.2018.40.01 DOI: https://doi.org/10.3767/persoonia.2018.40.01
  190. Santagata G., Cimmino A., Poggetto G.D., Zannini D., Masi M., … Evidente A., 2022. Polysaccharide based polymers produced by scabby cankered cactus pear (Opuntia ficus-indica L.) infected by Neofusicoccum batangarum: Composition, structure, and chemico-physical properties. Biomolecules 12(1): 89. https://doi.org/10.3390/biom12010089 DOI: https://doi.org/10.3390/biom12010089
  191. Santini A., Ghelardini L., De Pace C., Desprez‐Loustau M.L., Capretti P., … Stenlid J. 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist 197: 238–250. https://doi.org/10.1111/j.1469-8137.2012.04364.x DOI: https://doi.org/10.1111/j.1469-8137.2012.04364.x
  192. Scala E., Micheli M., Ferretti F., Maresi G., Zottele F., Piškur B., Scattolin L., 2019. New diseases due to indigenous fungi in a changing world: The case of hop hornbeam canker in the Italian Alps. Forest Ecology and Management 439: 159–170. https://doi.org/10.1016/j.foreco.2019.03.008 DOI: https://doi.org/10.1016/j.foreco.2019.03.008
  193. Schlegel M., Queloz V., Sieber T.N. 2018. The endophytic mycobiome of European ash and sycamore maple leaves–geographic patterns, host specificity and influence of ash dieback. Frontiers in Microbiology 9: 2345. https://doi.org/10.3389/fmicb.2018.02345 DOI: https://doi.org/10.3389/fmicb.2018.02345
  194. Seddaiu S., Sechi C., Ruiu P.A., Linaldeddu B.T., 2019. First report of canker and dieback caused by Diplodia africana on holm oak in Italy. Plant Disease 103(10): 2670. https://doi.org/10.1094/PDIS-05-19-1062-PDN DOI: https://doi.org/10.1094/PDIS-05-19-1062-PDN
  195. Seddaiu S., Mello A., Sechi C., Cerboneschi A., Linaldeddu B.T., 2021. First report of Neofusicoccum parvum associated with chestnut nut rot in Italy. Plant Disease 105(11): 3743. https://doi.org/10.1094/PDIS-01-21-0072-PDN DOI: https://doi.org/10.1094/PDIS-01-21-0072-PDN
  196. Sidoti A., 2016. Cancri e deperimenti causati da Neofusicoccum parvum su rimboschimenti di Acacia melanoxylon in Italia. Forest Journal of Silviculture and Forest Ecology 13(1): 41. https://doi.org/10.3832/efor2041-013 DOI: https://doi.org/10.3832/efor2041-013
  197. Senanayake I.C., Rossi W., Leonardi M. Weir A., McHugh Mark., … Song J., 2023. Fungal diversity notes 1611–1716: taxonomic and phylogenetic contributions on fungal genera and species emphasis in south China. Fungal Diversity https://doi.org/10.1007/s13225-023-00523-6 DOI: https://doi.org/10.1007/s13225-023-00523-6
  198. Slippers B., Wingfield M.J., 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews 21: 90–106. https://doi.org/10.1016/j.fbr.2007.06.002 DOI: https://doi.org/10.1016/j.fbr.2007.06.002
  199. Slippers B., Crous P.W., Jami F., Groenewald J.Z., Wingfield M.J., 2017. Diversity in the Botryosphaeriales: Looking back, looking forward. Fungal Biology 121(4): 307–321. https://doi.org/10.1016/j.funbio.2017.02.002 DOI: https://doi.org/10.1016/j.funbio.2017.02.002
  200. Smahi H., Belhoucine-Guezouli L., Berraf-Tebbal A., Chouih S., Arkam M., … Phillips A.J.L., 2017. Molecular characterization and pathogenicity of Diplodia corticola and other Botryosphaeriaceae species associated with canker and dieback of Quercus suber in Algeria. Mycosphere 8(2): 1261–1272. https://doi.org/10.5943/mycosphere/8/2/10 DOI: https://doi.org/10.5943/mycosphere/8/2/10
  201. Spagnolo A., Marchi G., Peduto F., Phillips A.J.L., Surico G., 2011. Detection of Botryosphaeriaceae species within grapevine woody tissues by nested PCR, with particular emphasis on the Neofusicoccum parvum/N. ribis complex. European Journal of Plant Pathology 129: 485–500. https://doi.org/10.1007/s10658-010-9715-9 DOI: https://doi.org/10.1007/s10658-010-9715-9
  202. Špetík M., Balík J., Híc P., Hakalová E., Štůsková K., … Eichmeier A., 2022. Lignans extract from knotwood of Norway spruce—A possible new weapon against GTDs. Journal of Fungi 8: 357. https://doi.org/10.3390/jof8040357 DOI: https://doi.org/10.3390/jof8040357
  203. Swart W.J., Wingfield M.J., 1991. Biology and control of Sphaeropsis sapinea on Pinus species in South Africa. Plant Disease 75: 761–766. DOI: https://doi.org/10.1094/PD-75-0761
  204. Tan W.F., Liang L., 2013. The advance of research in the virulence factors of deep fungi. The Chinese Journal of Dermatovenereology 27(11): 1167–1170.
  205. Tian Q., Li W.J., Hyde K.D., Camporesi E., Bhat D.J., … Xu J.C., 2018. Molecular taxonomy of five species of microfungi on Alnus spp. from Italy. Mycological Progress 17: 255–274. https://doi.org/10.1007/s11557-017-1336-7 DOI: https://doi.org/10.1007/s11557-017-1336-7
  206. Timmer L.W., Garnsey S.M., Graham J.H., 2000. Compendium of Citrus Diseases, 2nd ed., American Phytopathological Society: Saint Paul, MN, USA. DOI: https://doi.org/10.1094/9780890545850
  207. Turco E., Marianelli L., Vizzuso C., Ragazzi A., Gini R., … Tucci R., 2006. First report of Botryosphaeria dothidea on sycamore, red oak, and English oak in north western Italy. Plant Disease 90(8): 1106. https://doi.org/10.1094/pd-90-1106b DOI: https://doi.org/10.1094/PD-90-1106B
  208. Valencia D., Torres C., Camps R., López E., Celis-Diez J. L., Besoain X., 2015. Dissemination of Botryosphaeriaceae conidia in vineyards in the semiarid Mediterranean climate of the Valparaíso Region of Chile. Phytopathologia Mediterranea 54(2): 394–402. http://www.jstor.org/stable/43871845
  209. Van Niekerk J.M., Fourie P.H., Halleen F., Crous P.W., 2006. Botryosphaeria spp. as grapevine trunk disease pathogens. Phytopathologia Mediterranea 45: S43–S54. http://www.jstor.org/stable/26463235
  210. Van Niekerk J.M., Strever A.E., Toit P.G.D., Halleen F., 2011a. Influence of water stress on Botryosphaeriaceae disease expression in grapevines. Phytopathologia Mediterranea 50: S151–S165. https://doi.org/10.14601/Phytopathol_Mediterr-8968
  211. Van Niekerk J.M., Bester W., Halleen F., Crous P.W., Fourie P.H., 2011b. The distribution and symptomatology of grapevine trunk disease pathogens are influenced by climate. Phytopathologia Mediterranea 50: S98-S111. https://doi.org/10.14601/Phytopathol_Mediterr-8645
  212. Waqas M., Guarnaccia V., Spadaro D., 2022. First report of nut rot caused by Neofusicoccum parvum on hazelnut (Corylus avellana) in Italy. Plant Disease 106(7): 1987. https://doi.org/10.1094/pdis-10-21-2249-pdn DOI: https://doi.org/10.1094/PDIS-10-21-2249-PDN
  213. Wijayawardene N.N., Hyde K.D., Wanasinghe D.N., Papizadeh M., Goonasekara I.D., … Wang Y., 2016. Taxonomy and phylogeny of dematiaceous Coelomycetes. Fungal Diversity 77: 1–316. https://doi.org/10.1007/s13225-016-0360-2 DOI: https://doi.org/10.1007/s13225-016-0360-2
  214. Wijesinghe S.N., Camporesi E., Wanasinghe D.N., Maharachchikumbura S.S.N., Senanayake I.C., … Hyde K.D., 2021. A dynamic online documentation of Italian ascomycetes with hosts and substrates. Asian Journal of Mycology 4(1): 10–18. https://doi.org/10.5943/ajom/4/1/2 DOI: https://doi.org/10.5943/ajom/4/1/2
  215. Yang T., Groenewald J.Z., Cheewangkoon R., Jami F., Abdollahzadeh J., … Crous P.W., 2017. Families, genera, and species of Botryosphaeriales. Fungal Biology 121(4): 322–346. https://doi.org/10.1016/j.funbio.2016.11.001 DOI: https://doi.org/10.1016/j.funbio.2016.11.001
  216. Zhang Y., Zhou Y., Sun W., Zhao L., Pavlic-Zupanc., … Dai Y., 2020. Toward a natural classification of Botryosphaeriaceae: a study of the type specimens of Botryosphaeria sensu lato. Frontiers in Microbiology 12: 737541. https://doi.org/10.3389/fmicb.2021.737541 DOI: https://doi.org/10.3389/fmicb.2021.737541
  217. Zhang W., Groenewald J.Z., Lombard L., Schumacher R.K., Phillips A.J.L., Crous P.W., 2021. Evaluating species in Botryosphaeriales. Persoonia 46: 63–115. https://doi.org/10.3767/persoonia.2021.46.03 DOI: https://doi.org/10.3767/persoonia.2021.46.03
  218. Zimowska B., Okoń S., Becchimanzi A., Krol E.D., Nicoletti R., 2020. Phylogenetic characterization of Botryosphaeria strains associated with Asphondylia galls on species of Lamiaceae. Diversity 12(2): 41. https://dx.doi.org/10.3390/d12020041 DOI: https://doi.org/10.3390/d12020041
  219. Zlatković M., Wingfield M.J., Jami F., Slippers B., 2017. Host specificity of co-infecting Botryosphaeriaceae on ornamental and forest trees in the Western Balkans. Forest Pathology 48: e12410. https://doi.org/10.1111/efp.12410 DOI: https://doi.org/10.1111/efp.12410
  220. Zlatković M., Wingfield M.J., Jami F., Slippers B. 2019. Genetic uniformity characterizes the invasive spread of Neofusicoccum parvum and Diplodia sapinea in the Western Balkans. Forest pathology 49: e12491. https://doi.org/10.1111/efp.12491 DOI: https://doi.org/10.1111/efp.12491
  221. Zwolinski J.B., Swart W.J., Wingfield M.J., 1990. Intensity of dieback induced by Sphaeropsis sapinea in relation to site conditions. European Journal of Forest Pathology 20: 167-174. https://doi.org/10.1111/j.1439-0329.1990.tb01127. DOI: https://doi.org/10.1111/j.1439-0329.1990.tb01127.x