Vol. 62 No. 3 (2023)
Articles

Pathogenicity of Botryosphaeriaceae and Phytophthora species associated with Paulownia dieback, canker and root rot in Italy

Carlo BREGANT
Dipartimento Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell’Università, 16, 35020 Legnaro
Francesca CARLONI
Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, I-60131, Ancona
Mattia BALESTRA
Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, I-60131, Ancona
Benedetto T. LINALDEDDU
Dipartimento Territorio e Sistemi Agro-Forestali, Università degli Studi di Padova, Viale dell’Università, 16, 35020 Legnaro
Bio
Sergio MUROLO
Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, I-60131, Ancona

Published 2023-12-30

Keywords

  • Phytophthora pseudocryptogea,
  • P. citrophthora,
  • P. erythroseptica,
  • Macrophomina phaaseolina,
  • Botryosphaeria dothidea,
  • emerging diseases
  • ...More
    Less

How to Cite

[1]
C. BREGANT, F. CARLONI, M. BALESTRA, B. T. LINALDEDDU, and S. MUROLO, “Pathogenicity of Botryosphaeriaceae and Phytophthora species associated with Paulownia dieback, canker and root rot in Italy”, Phytopathol. Mediterr., vol. 62, no. 3, pp. 481–488, Dec. 2023.

Abstract

In recent years, an unusual decline and mortality has been observed in Paulownia plantations throughout the Marche region (Central Italy). Given the economic importance of this emerging forest crop, a study was conducted to determine which pathogens are directly involved in this syndrome. Field surveys performed in two plantations revealed the widespread occurrence of severe disease symptoms such as leaf chlorosis, crown thinning, shoot and branch dieback, sunken cankers, epicormic shoots and root rot. Disease incidence was also assessed by aerial remote sensing (RS) technologies using drones. Symptomatic samples collected from both stem and root tissues yielded fungal and fungal-like colonies representing two distinct families: Botryosphaeriaceae and Peronosporaceae. Morphological and DNA sequence data revealed five distinct species, identified as Macrophomina phaseolina and Botryosphaeria dothidea (Botryosphaeriaceae), Phytophthora pseudocryptogea, P. citrophthora and P. erythroseptica (Peronosporaceae). Given that all species are reported here for the first time on Paulownia, Koch’s postulates were satisfied inoculating the three Phytophthora species and two Botryosphaeriaceae at the collar of the stem of potted 1-year-old rooted cuttings in June 2023. Thirty days after inoculation, all plants showed the same symptoms as those observed in the field.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Aloi F., Riolo M., La Spada F., Bentivenga G., Moricca S., … Cacciola S.O., 2021. Phytophthora root and collar rot of Paulownia, a new disease for Europe. Forests 12: 1664. https://doi.org/10.3390/f12121664 DOI: https://doi.org/10.3390/f12121664
  2. Basu C., Joshee N., Gezalian T., Vaidya B.N., Satidkit A., … Perry Z.D., 2016. Cross-species PCR and field studies on Paulownia elongata: a potential bioenergy crop. Bioethanol 2: 12–23. https://doi.org/10.1515/bioeth-2015-0002 DOI: https://doi.org/10.1515/bioeth-2015-0002
  3. Benigno A., Bregant C., Aglietti C., Rossetto G., Tolio B., … Linaldeddu B.T., 2023. Pathogenic fungi and oomycetes causing dieback on Fraxinus species in the Mediterranean climate change hotspot region. Frontiers in Forests and Global Change 6: 1253022. https://doi.org/10.3389/ffgc.2023.1253022 DOI: https://doi.org/10.3389/ffgc.2023.1253022
  4. Botond M., Botta-Dukat B., 2004. Biologai Invaziok Magyaroszaragon Ozonnovenyek. Alapitavany Kiadò, Budapest.
  5. Bregant C., Sanna G.P., Bottos A., Maddau L., Montecchio L., Linaldeddu B.T., 2020. Diversity and pathogenicity of Phytophthora species associated with declining alder trees in Italy and description of Phytophthora alpina sp. nov. Forests 11(8): 848. https://doi.org/10.3390/f11080848 DOI: https://doi.org/10.3390/f11080848
  6. Essl F., 2007. From ornamental to detrimental? The incipient invasion of Central Europe by Paulownia tomentosa. Preslia 79: 377–389.
  7. Gao R., Zhang G.M., Lan Y.F., Zhu T.S., Yu X.Q., … Li X.D., 2008. Molecular characterization of phytoplasma associated with rose witches’broom in China. Journal of Phytopathology 156: 93–98. https://doi.org/10.1111/j.1439-0434.2007.01322.x DOI: https://doi.org/10.1111/j.1439-0434.2007.01322.x
  8. Hauk S., Knoke T., Wittkopf S., 2014. Economic evaluation of short rotation coppice systems for energy from biomass - a review. Renewable and Sustainable Energy Reviews 29: 435–448. https://doi.org/10.1016/j.rser.2013.08.103 DOI: https://doi.org/10.1016/j.rser.2013.08.103
  9. Inderbitzin P., Bostock R.M., Trouillas F.P., Michailides T.J., 2010. A six-locus phylogeny reveals high species diversity in Botryosphaeriaceae from California almond. Mycologia 102: 1350–1368. https://doi.org/10.3852/10-006 DOI: https://doi.org/10.3852/10-006
  10. Ivanova K., Georgieva T., Markovska Y., 2016. A possible role of C4 photosynthetic enzymes in tolerance of two Paulownia hybrid lines to salinity. Annuaire de L’université Sofia 101: 132–140.
  11. Jakubowski M., 2022. Cultivation potential and uses of Paulownia wood: A review. Forests 13(5): 668. https://doi.org/10.3390/f13050668 DOI: https://doi.org/10.3390/f13050668
  12. Kroon L.P.N.M., Bakker F.T., Van Den Bosch G.B.M., Bonants P.J.M., FlierW.G., 2004. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics Biology 41(8): 766–782. https://doi.org/10.1016/j.fgb.2004.03.007 DOI: https://doi.org/10.1016/j.fgb.2004.03.007
  13. Kumar S., Stecher G., Li M., Knyaz C., Tamura K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096 DOI: https://doi.org/10.1093/molbev/msy096
  14. Linaldeddu B.T., Mulas A.A., Bregant C., Piras G., Montecchio L., 2020. First report of Phytophthora pistaciae causing root and collar rot on nursery plants of Pistacia lentiscus in Italy. Plant Disease 104(5): 1564. https://doi.org/10.1094/PDIS-12-19-2567-PDN DOI: https://doi.org/10.1094/PDIS-12-19-2567-PDN
  15. Linaldeddu B.T., Rossetto G., Maddau L., Vatrano T., Bregant C., 2023. Diversity and pathogenicity of Botryosphaeriaceae and Phytophthora species associated with emerging olive diseases in Italy. Agriculture 3(8): 1575. https://doi.org/10.3390/agriculture13081575 DOI: https://doi.org/10.3390/agriculture13081575
  16. Liu Y., Zhong F., Chen J., 2022. Elsinoe ampelina causing Paulownia scab in China. European Journal of Plant Pathology 162: 989–994. https://doi.org/10.1007/s10658-021-02446-x DOI: https://doi.org/10.1007/s10658-021-02446-x
  17. Milenkovic I., Tomšovský M., Karadžic D., Veselinovic M., 2018. Decline of Paulownia tomentosa caused by Trametes hirsuta in Serbia. Forest Pathology 48: e12438. https://doi.org/10.1111/efp.12438 DOI: https://doi.org/10.1111/efp.12438
  18. Muthuri C.W., Ong C.K., Black C.R., Mati B.M., Ngumi V.W., Van Noordwijk M., 2004. Modelling the effects of leafing phenology on growth and water use by selected agroforestry tree species in semi-arid Kenya. Land Use and Water Resources Research 4: 1–11. http://dx.doi.org/10.22004/ag.econ.47874
  19. Pasiecznick, N. Paulownia tomentosa. Invasive Species Compendium; CABI International: Wallingford, UK, 2019; Available online: www.cabi.org/isc (accessed on 01 September 2023).
  20. Pleysier, C.E., Bayliss, K.L., Dell, B., Hardy, G.E.S.J., 2006. Temperature, humidity, wounding and leaf age influence the development of Alternaria alternata lesions on leaves of Paulownia fortunei. Australasian Plant Pathology 35: 329–333. https://doi.org/10.1071/AP06030 DOI: https://doi.org/10.1071/AP06030
  21. Pozoga M., Olewnicki D., Jabłonska L., 2019. In vitro propagation protocols and variable cost comparison in commercial production for Paulownia tomentosa × Paulownia fortunei hybrid as a renewable energy source. Applied Science 9: 2272. https://doi.org/10.3390/app9112272 DOI: https://doi.org/10.3390/app9112272
  22. Ray J.D., Burgess T., Malajczuk N., Hardy G.E.S.J., 2005. First report of Alternaria blight of Paulownia spp. Australasian Plant Pathology 34: 107–109. https://doi.org/10.1071/AP04087 DOI: https://doi.org/10.1071/AP04087
  23. Sage R.F., Sultmanis S., 2016. Why are there no C4 forests? Journal of Plant Physiology 203: 55–68. https://doi.org/10.1016/j.jplph.2016.06.009 DOI: https://doi.org/10.1016/j.jplph.2016.06.009
  24. Skwiercz A., Dobosz R., Flis L., Damszel M., Litwinczuk W., 2019. First report of Meloidogyne hapla on Paulownia tomentosa in Poland. Acta Societatis Botanicorum Poloniae 88: 3628. https://doi.org/10.5586/asbp.3628 DOI: https://doi.org/10.5586/asbp.3628
  25. Stuepp C.A., Zuffellato-Ribas K.C., Koehler H.S., Wendling I., 2015. Rooting mini-cuttings of Paulownia fortunei var. mikado derived from clonal mini-garden. Revista Árvore 39: 497–504. https://doi.org/10.1590/0100-67622015000300010 DOI: https://doi.org/10.1590/0100-67622015000300010
  26. Temirov J., Shukurova G., Klichov I., 2021. Study on the influence of stimulants on the rooting of the Paulownia (Paulownia) and Tulip (Liriodendron tulipifera) trees during the propagation by cuttings. IOP Conference Series: Earth and Environmental Science 939: 012059. https://doi.org/10.1088/1755-1315/939/1/012059 DOI: https://doi.org/10.1088/1755-1315/939/1/012059
  27. Testa R., Schifani G., Rizzo G., Migliore G., 2022. Assessing the economic profitability of Paulownia as a biomass crop in Southern Mediterranean area. Journal of Cleaner Production 336: 130426. https://doi.org/10.1016/j.jclepro.2022.130426 DOI: https://doi.org/10.1016/j.jclepro.2022.130426
  28. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G., 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876–4882. https://doi.org/10.1093/nar/25.24.4876 DOI: https://doi.org/10.1093/nar/25.24.4876
  29. Vanbeveren S.P., Spinelli R., Eisenbies M., Schweier J., Mola-Yudego B., … Ceulemans R., 2017. Mechanised harvesting of short-rotation coppices. Renewable and Sustainable Energy Reviews 76: 90–104. https://doi.org/10.1016/j.rser.2017.02.059 DOI: https://doi.org/10.1016/j.rser.2017.02.059
  30. Wang J., Wang H., Deng T., Liu Z., Wang X., 2019. Time-coursed transcriptome analysis identifies key expressional regulation in growth cessation and dormancy induced by short days in Paulownia. Scientific Reports 9: 16602. https://doi.org/10.1038/s41598-019-53283-2 DOI: https://doi.org/10.1038/s41598-019-53283-2
  31. White T.J., Bruns T., Lee S.J.W.T., Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1): 315–322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  32. Woźniak M., Gałązka A., Siebielec G., Frąc M., 2022. Can the biological activity of abandoned soils be changed by the growth of Paulownia elongate × Paulownia fortunei? Preliminary study on a young tree plantation. Agriculture 12: 128. https://doi.org/10.3390/agriculture12020128 DOI: https://doi.org/10.3390/agriculture12020128