Vol. 64 No. 3 (2025)
Articles

Optimization of DNA extraction and application of qPCR and ddPCR assays for detection of toxigenic Aspergillus flavus in hazelnut kernels

Alessia CASU
Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza, 29122, Italy
Giorgio CHIUSA
Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza, 29122, Italy
Paola BATTILANI
Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza, 29122, Italy
Hillary L. MEHL
United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States of America

Published 2025-12-30

Keywords

  • Aflatoxins,
  • food safety,
  • molecular diagnosticsdigital PCR,
  • fungal contamination

How to Cite

[1]
A. CASU, G. CHIUSA, P. BATTILANI, and H. L. MEHL, “Optimization of DNA extraction and application of qPCR and ddPCR assays for detection of toxigenic Aspergillus flavus in hazelnut kernels”, Phytopathol. Mediterr., vol. 64, no. 3, pp. 637–648, Dec. 2025.

Abstract

Aflatoxin contamination in hazelnuts, primarily caused by Aspergillus flavus, poses significant risks to food safety and public health, requiring highly sensitive and robust toxin detection strategies. While conventional culturing techniques remain relevant, they are time-consuming and prone to misidentifications. A molecular workflow for early detection of aflatoxigenic A. flavus in hazelnuts was developed and validated, combining an optimized DNA extraction protocol with quantitative PCR (qPCR) and droplet digital PCR (ddPCR) assays. Four DNA extraction methods were compared for their DNA yields and purity. DNA extraction protocol was optimized introducing a Tween-80 separation step, and was tested on hazelnuts artificially inoculated with aflatoxigenic A. flavus conidia. The optimized protocol was then validated for naturally contaminated hazelnut samples to assess its practical applicability, and to benchmark the performance of qPCR and ddPCR on real samples. The optimized protocol gave yield, purity and amplifiability, and appeared more appropriate for detecting aflatoxigenic A. flavus DNA in complex food matrices such as hazelnuts. The qPCR and ddPCR protocols detected target DNA, with ddPCR offering enhanced sensitivity and superior analytical performance. The developed protocol showed an increased sensitivity and quantification precision compared with previously developed methods. This research provides a validated molecular workflow for the early and sensitive detection of A. flavus in hazelnuts, offering a tool for preventive food safety monitoring and supporting aflatoxin risk assessment strategies for the hazelnut value chain.

Downloads

Download data is not yet available.

References

  1. Aghayev F., Bandyopadhyay R., Battilani P., Ortega-Beltran A., 2025. Mycotoxin contamination of hazelnut grown in Azerbaijan and Aspergillus communities associated with the crop. Plant Disease https://doi.org/10.1094/pdis-12-24-2623-SC
  2. Ahmad M.M., Ahmad M., Ali A., Hamid R., Javed S., Abdin M.Z., 2014. Detection of Aspergillus flavus and Aspergillus parasiticus from aflatoxin-contaminated peanuts and their differentiation using PCR-RFLP. Annals of Microbiology 64(4): 1597–1605. https://doi.org/10.1007/S13213-014-0803-5
  3. Caceres I., Khoury A. Al, El Khoury R., Lorber S., Bailly J.D., 2020. Aflatoxin biosynthesis and genetic regulation: a review. Toxins 12(3): 150. https://doi.org/10.3390/toxins12030150
  4. Callicott K.A., Cotty P.J., 2015. Method for monitoring deletions in the aflatoxin biosynthesis gene cluster of Aspergillus flavus with multiplex PCR. Letters in Applied Microbiology 60(1): 60–65. https://doi.org/10.1111/lam.12337
  5. Chen R.S., Tsay J.G., Huang Y.F., Chiou R.Y.Y., 2002. Polymerase chain reaction–mediated characterization of molds belonging to the Aspergillus flavus group and detection of Aspergillus parasiticus in peanut kernels by a multiplex polymerase chain reaction. Journal of Food Protection 65(5): 840–844. https://doi.org/10.4315/0362-028X-65.5.840
  6. Ciardo D.E., Schär G., Altwegg M., Böttger E.C., Bosshard P.P., 2007. Identification of moulds in the diagnostic laboratory: an algorithm implementing molecular and phenotypic methods. Diagnostic Microbiology and Infectious Disease 59(1): 49–60. https://doi.org/10.1016/j.diagmicrobio.2007.04.020
  7. Conlon B.H., Schmidt S., Poulsen M., Shik J.Z., 2022. Orthogonal protocols for DNA extraction from filamentous fungi. STAR Protocols 3(1): 101126. https://doi.org/10.1016/j.xpro.2022.101126
  8. Cotty P.J., Bayman P., 1993. Competitive exclusion of a toxigenic strain of Aspergillus flavus by an atoxigenic strain. Phytopathology 83: 1283–1287. https://doi.org/10.1094/Phyto-83-1283
  9. Degola F., Berni E., Spotti E., Ferrero I., Restivo F.M., 2009. Facing the problem of “false positives”: re-assessment and improvement of a multiplex RT-PCR procedure for the diagnosis of A. flavus mycotoxin producers. International Journal of Food Microbiology 129(3): 300–305. https://doi.org/10.1016/j.ijfoodmicro.2008.12.016
  10. Douksouna Y., Kwallah A.O., Nyerere A., Runo S., Ambang Z., 2020. Application and evaluation of the loop-mediated isothermal amplification assay for the detection of aflatoxigenic fungi contaminants of rice grains in Kenya. Plant Pathology & Microbiology 11: 491.
  11. European Commission (EC), 2023. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Official Journal of the European Union L119: 103–127.
  12. Gallo A., Epifani F., Bonsegna S., Pascale M., Santino A., Perrone G., 2010. Analysis of genes early expressed during Aspergillus flavus colonisation of hazelnut. International Journal of Food Microbiology 137(1): 111–115. https://doi.org/10.1016/j.ijfoodmicro.2009.11.010
  13. Garcia-Lopez M.T., Luo Y., Ortega-Beltran A., Jaime R., Moral J., Michailides T.J., 2021. Quantification of the aflatoxin biocontrol strain Aspergillus flavus AF36 in soil and in nuts and leaves of pistachio by real-time PCR. Plant Disease 105(6): 1765–1772. https://doi.org/10.1094/pdis-05-20-1097-RE
  14. González-Salgado A., González-Jaén T., Vázquez C., Patiño B., 2011. Highly sensitive PCR-based detection specific to Aspergillus flavus. Methods in Molecular Biology 739: 211–216. https://doi.org/10.1007/978-1-61779-102-4_19
  15. Habibi A., 2021. Aspergillus species in retail samples of pistachio, walnut, and hazelnut in Kerman, Iran. Mycologia Iranica 8(2): 77–94. https://doi.org/10.22092/mi.2022.359369.1223
  16. Hamed N.A.S., Murad A.F., Abdul-Rahim E.A.W., 2016. Molecular diagnosis of aflatoxigenic Aspergillus flavus isolated from nuts. Research Journal of Environmental Toxicology 10(1): 39–45.
  17. Hassan K.I., Hama Sharef P., 2023. Identification of fungi associated with hazelnuts and determination of their mycotoxin. IOP Conference Series: Earth and Environmental Science 1213(1): 012074. https://doi.org/10.1088/1755-1315/1213/1/012074
  18. Hua S.S.T., Palumbo J.D., Parfitt D.E., Sarreal S.B.L., O’Keeffe T.L., 2018. Development of a droplet digital PCR assay for population analysis of aflatoxigenic and atoxigenic Aspergillus flavus mixtures in soil. Mycotoxin Research 34(3): 187–194. https://doi.org/10.1007/S12550-018-0313-6
  19. IARC, 1993. Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 56. International Agency for Research on Cancer, Lyon, France.
  20. Kabak B., 2016. Aflatoxins in hazelnuts and dried figs: occurrence and exposure assessment. Food Chemistry 211: 8–16. https://doi.org/10.1016/j.foodchem.2016.04.141
  21. Latha R., Manonmani H.K., Rati E.R., 2008. Multiplex PCR assay for the detection of aflatoxigenic and non-aflatoxigenic Aspergilli. Research Journal of Microbiology 3(3): 136–142. https://doi.org/10.3923/jm.2008.136.142
  22. Leharanger A., Paumier D., Orlando B., Bailly S., Valade R., 2024. Two new qPCR assays for detecting and quantifying the Aspergillus flavus and Aspergillus parasiticus clades in maize kernels. Plant Pathology 73(9): 2372–2381. https://doi.org/10.1111/ppa.13982
  23. Liu P., Li B., Yin R., Weng Q., Chen Q., 2014. Development and evaluation of ITS- and aflP-based LAMP assays for rapid detection of Aspergillus flavus in food samples. Canadian Journal of Microbiology 60(9): 579–584. https://doi.org/10.1139/cjm-2014-0202
  24. Lombardi S.J., Pannella G., Tremonte P., Mercurio I., Vergalito F., Coppola R., 2022. Fungi occurrence in ready-to-eat hazelnuts (Corylus avellana) from different boreal hemisphere areas. Frontiers in Microbiology 13: 900876. https://doi.org/10.3389/fmicb.2022.900876
  25. Luo Y., Gao W., Doster M., Michailides T.J., 2009. Quantification of conidial density of Aspergillus flavus and A. parasiticus in soil from almond orchards using real-time PCR. Journal of Applied Microbiology 106(5): 1649–1660. https://doi.org/10.1111/j.1365-2672.2008.04132.x
  26. Luo J., Vogel R.F., Niessen L., 2012. Development and application of a loop-mediated isothermal amplification assay for rapid identification of aflatoxigenic molds and their detection in food samples. International Journal of Food Microbiology 159(3): 214–224. https://doi.org/10.1016/j.ijfoodmicro.2012.08.018
  27. Luo J., Taniwaki M.H., Iamanaka B.T., Vogel R.F., Niessen L., 2014. Application of loop-mediated isothermal amplification assays for direct identification of pure cultures of Aspergillus flavus, A. nomius and A. caelatus and for their rapid detection in shelled Brazil nuts. International Journal of Food Microbiology 172: 5–12. https://doi.org/10.1016/j.ijfoodmicro.2013.12.001
  28. Mahmoud M.A., 2015. Detection of Aspergillus flavus in stored peanuts using real-time PCR and expression of aflatoxin genes in toxigenic and atoxigenic isolates. Foodborne Pathogens and Disease 12(4): 289–296. https://doi.org/10.1089/fpd.2014.1854
  29. Mitema A., Okoth S., Rafudeen S.M., 2019. The development of a qPCR assay to measure Aspergillus flavus biomass in maize and the use of a biocontrol strategy to limit aflatoxin production. Toxins 11(3): 179. https://doi.org/10.3390/toxins11030179
  30. Niessen L., Bechtner J., Fodil S., Taniwaki M.H., Vogel R.F., 2018. LAMP-based group-specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices and dried fruit using neutral red for visible-light signal detection. International Journal of Food Microbiology 266: 241–250. https://doi.org/10.1016/j.ijfoodmicro.2017.12.013
  31. Northolt M.D., Van Egmond H.P., Paulsch W.E., 1977. Differences between Aspergillus flavus strains in growth and aflatoxin B1 production in relation to water activity and temperature. Journal of Food Protection 40(11): 778–781. https://doi.org/10.4315/0362-028X-40.11.778
  32. Nooralden Z.N., Mohammed H.A., 2022. Isolation and identification of fungi associated with walnuts, almonds, hazelnuts, cashews, pistachios and peanuts using molecular diagnostics (PCR) in local markets of Kirkuk Governorate, Iraq. Journal of Pharmaceutical Negative Results 13: 1–8.
  33. Ortega S.F., Siciliano I., Prencipe S., Gullino M.L., Spadaro D., 2020. Development of PCR, LAMP and qPCR assays for the detection of aflatoxigenic strains of Aspergillus flavus and A. parasiticus in hazelnut. Toxins 12(12): 757. https://doi.org/10.3390/toxins12120757
  34. Passone M.A., Rosso L.C., Ciancio A., Etcheverry M., 2010. Detection and quantification of Aspergillus section Flavi spp. in stored peanuts by real-time PCR of the nor-1 gene and effects of storage conditions on aflatoxin production. International Journal of Food Microbiology 138(3): 276–281. https://doi.org/10.1016/j.ijfoodmicro.2010.01.003
  35. Pitt J.I., Hocking A.D., 1997. Fungi and food spoilage. Blackie Academic & Professional, London, UK. https://doi.org/10.1007/978-1-4615-6391-4
  36. RASFF, 2025. Rapid Alert System for Food and Feed. Available at: https://webgate.ec.europa.eu/rasff-window/screen/search (accessed 27 October 2025).
  37. Rodríguez A., Rodríguez M., Luque M.I., Martín A., Córdoba J.J., 2012. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods. Food Microbiology 31(1): 89–99. https://doi.org/10.1016/j.fm.2012.02.009
  38. Rushing B.R., Selim M.I., 2019. Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure and detoxification methods. Food and Chemical Toxicology 124: 81–100. https://doi.org/10.1016/j.fct.2018.11.047
  39. Sardiñas N., Vázquez C., Gil-Serna J., González-Jaén M.T., Patiño B., 2011. Specific detection and quantification of Aspergillus flavus and Aspergillus parasiticus in wheat flour by SYBR® Green quantitative PCR. International Journal of Food Microbiology 145(1): 121–125. https://doi.org/10.1016/j.ijfoodmicro.2010.11.041
  40. Scherm B., Palomba M., Serra D., Marcello A., Migheli Q., 2005. Detection of transcripts of the aflatoxin genes aflD, aflO and aflP by reverse transcription–polymerase chain reaction allows differentiation of aflatoxin-producing and non-producing isolates of Aspergillus flavus and Aspergillus parasiticus. International Journal of Food Microbiology 98(2): 201–210. https://doi.org/10.1016/j.ijfoodmicro.2004.06.004
  41. Shapira R., Paster N., Eyal O., Menasherov M., Mett A., Salomon R., 1996. Detection of aflatoxigenic molds in grains by PCR. Applied and Environmental Microbiology 62(9): 3270–3273. https://doi.org/10.1128/AEM.62.9.3270-3273.1996
  42. Shweta S., Madhavan S., Paranidharan V., Velazhahan R., 2013. Detection of Aspergillus flavus in maize kernels by conventional and real-time PCR assays. International Food Research Journal 20(6): 3329–3335.