Published 2024-12-30
Keywords
- Aspergillus flavus,
- model transfer,
- weather,
- phenology,
- mycotoxin
- climate change ...More
How to Cite
Copyright (c) 2024 Matteo CROSTA, Marco CAMARDO LEGGIERI, Paola BATTILANI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Italian production of peanuts has recently increased. Aflatoxin B1 (AFB1) contamination of peanuts is currently not in Italy, but changing climatic conditions of the Mediterranean region may increase risks posed by this mycotoxin. A mechanistic weather-driven prototype model to predict AFB1 contamination in peanuts was developed by adapting the mechanistic AFLA-maize model for the Aspergillus flavus-peanut pathosystem. The peanut growth stages were examined to develop a phenology model based on growing degree days (GDD), which was linked to an A. flavus infection cycle model, and exploited to develop the “AFLA-peanut” prototype model. Starting from sowing, 686 GDD were required to reach flowering (as the critical growth stage for A. flavus infection), and 1925 GDD were required to reach harvesting, in a short season peanut variety. Variability of the AFB1 index, across years and locations, highlighted the capacity of AFLA-peanuts to account for weather data inputs in predicting AFB1 contamination risks. Although model validation will be mandatory to assess AFLA-peanut performance, this study has provided the first evidence that the prototype model could become an important tool for aflatoxin risk management.
Downloads
Metrics
References
- Amaike S., Keller N.P., 2011. Aspergillus flavus. Annual Review of Phytopathology 49: 107–133. https://doi.org/10.1146/annurev-phyto-072910-095221
- Aristil J., Venturini G., Maddalena G., Toffolatti S.L., Spada A., 2020. Fungal contamination and aflatoxin content of maize, moringa and peanut foods from rural subsistence farms in South Haiti. Journal of Stored Products Research 85: 101550. https://doi.org/10.1016/j.jspr.2019.101550
- Arpae, 2024. Hourly meteorological open data. Available at: https://www.arpae.it/it/temi-ambientali/clima/dati-e-indicatori/open-data-meteo-clima/dataset-meteo-climatici
- Banterng P., Patanothai A., Pannangpetch K., Jogloy S., Hoogenboom G., 2003. Seasonal variation in the dynamic growth and development traits of peanut lines. Journal of Agricultural Science 141(1): 51–62. https://doi.org/10.1017/S0021859603003435
- Battilani P., Camardo Leggieri M., Rossi V., Giorni P., 2013. AFLA-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin B1 contamination in maize. Computers and Electronics in Agriculture 94: 38–46. https://doi.org/10.1016/j.compag.2013.03.005
- Battilani P., Camardo Leggieri M., 2015. Predictive modelling of aflatoxin contamination to support maize chain management. World Mycotoxin Journal 8(2): 161–170. https://doi.org/10.3920/WMJ2014.1740
- Battilani P., Toscano P., Van Der Fels-Klerx H.J., Moretti A., Camardo Leggieri M., … Robinson T., 2016. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports 6: 1–7. https://doi.org/10.1038/srep24328
- Boken V. K., Hoogenboom G., Williams J. H., Diarra B., Dione S., Easson G. L., 2008. Monitoring peanut contamination in Mali (Africa) using AVHRR satellite data and a crop simulation model. International Journal of Remote Sensing 29(1): 117–129. https://doi.org/10.1080/01431160701264250
- Bottarelli L., Zinoni F., 2002. La rete meteorologica regionale. Il Divulgatore 5: 13–17.
- Canavar Ö., Kaynak M. A., 2010. Growing degree day and sunshine radiation effects on peanut pod yield and growth. African Journal of Biotechnology 9(15): 2234–2241. https://doi.org/10.5897/AJB10.1432
- Carter E.T., Troy P., Rowland D.L., Tillman B.L., Wynne K.W., … Mulvaney, M., 2016. Methods to evaluate peanut maturity for optimal seed quality and yield. Edis 2016 (7). https://doi.org/10.32473/edis-ag411-2016
- Cervini C., Verheecke-Vaessen C., He T., Mohammed A., Magan N., Medina A., 2022. Improvements within the peanut production chain to minimize aflatoxins contamination: an Ethiopian case study. Food Control 136: 108622. https://doi.org/10.1016/j.foodcont.2021.108622
- Chauhan Y.S., Wright G.C., Rachaputi R.C.N., Holzworth D., Broome A., … Robertson M.J., 2010. Application of a model to assess aflatoxin risk in peanuts. Journal of Agricultural Science 148(3): 341–351. https://doi.org/10.1017/S002185961000002X
- Chulze S.N., Alaniz Zanon M.S., Taniwaki M.H., Tsitsigiannis D., Olsen M., … Battilani, P., 2024. Aflatoxins in the nut chains: strategies to reduce their impact on consumer’s health and economic losses. World Mycotoxin Journal 17(1): 33–56. https://doi.org/10.1163/18750796-bja10003
- Cole R.J., Hill R.A., Blankenship P.D., Sanders T.H., 1986. Color mutants of Aspergillus flavus and Aspergillus parasiticus in a study of preharvest invasion of peanuts. Applied and Environmental Microbiology 52(5): 1128–1131. https://doi.org/10.1128/aem.52.5.1128-1131.1986
- Craufurd P.Q., Prasad P.V.V., Waliyar F., Taheri, A., 2006. Drought, pod yield, pre-harvest Aspergillus infection and aflatoxin contamination on peanut in Niger. Field Crops Research 98(1): 20–29. https://doi.org/10.1016/j.fcr.2005.12.001
- FAOSTAT, 2024. Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/faostat/en/#data/QCL/visualize. Accessed October 02, 2024.
- Giorni P., Magan N., Pietri A., Bertuzzi T., Battilani, P., 2007. Studies on Aspergillus section Flavi isolated from maize in northern Italy. International Journal of Food Microbiology 113(3): 330–338. https://doi.org/10.1016/j.ijfoodmicro.2006.09.007
- GRDC, 2018. Peanuts Northern Region - GrowNotes. Available at: https://grdc.com.au/resources-and-publications/grownotes/crop-agronomy/peanutgrownotes
- Horn B.W., 2005. Colonization of wounded peanut seeds by soil fungi: selectivity for species from Aspergillus section Flavi. Mycologia 97(1): 202–217. https://doi.org/10.1080/15572536.2006.11832854
- Istat, 2024. Istat: coltivazioni. Available at: https://www.istat.it/statistiche-per-temi/economia/agricoltura/#Microdati. Accessed October 02, 2024.
- Kaminiaris M.D., Leggieri M.C., Tsitsigiannis D.I., Battilani P., 2020. AFLA-PISTACHIO: Development of a mechanistic model to predict the aflatoxin contamination of pistachio nuts. Toxins 12(7): 445. https://doi.org/10.3390/toxins12070445
- Ketring D.L., Wheless T. G., 1989. Thermal time requirements for phenological development of peanut. Agronomy Journal 81(6): 910–917. https://doi.org/10.2134/agronj1989.00021962008100060013x
- Kingra P.K., Kaur P., 2012. Effect of dates of sowing on thermal utilisation and heat use efficiency of groundnut cultivars in Central Punjab. Journal of Agricultural Physics, 12(1): 54–62.
- Kos J., Mastilović J., Hajnal E.J., Šarić B., 2013. Natural occurrence of aflatoxins in maize harvested in Serbia during 2009-2012. Food Control 34(1): 31–34. https://doi.org/10.1016/j.foodcont.2013.04.004
- Leffelaar P.A., 1993. Basic elements of dynamic simulation. In: On System Analysis and Simulation of Ecological Processes with Examples in CSMP and FORTAN (Leffelaar P.A., ed), Springer Netherlands, Dordrecht, Netherlands, 11–27. https://doi.org/10.1007/978-94-011-2086-9_2
- Leggieri M.C., Lanubile A., Dall’Asta C., Pietri A., Battilani, P., 2020. The impact of seasonal weather variation on mycotoxins: Maize crop in 2014 in northern Italy as a case study. World Mycotoxin Journal 13(1): 25–36. https://doi.org/10.3920/WMJ2019.2475
- Mcmaster G.S., Wilhelm W.W., 1997. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87(1): 300.
- Meier U., 2001. Growth stages of mono-and dicotyledonous plants: BBCH Monograph. 2nd ed. Federal Biological Research Centre for Agriculture and Forestry, Bonn, Germany.
- Mingrou L., Guo S., Ho C.T., Bai, N., 2022. Review on chemical compositions and biological activities of peanut (Arachis hypogaea L.). Journal of Food Biochemistry 46(7): 1–16. https://doi.org/10.1111/jfbc.14119
- Moretti A., Pascale M., Logrieco A.F., 2019. Mycotoxin risks under a climate change scenario in Europe. Trends in Food Science and Technology 84: 38–40. https://doi.org/10.1016/j.tifs.2018.03.008
- Özkaya S., Soylu S., Kara M., Gümüş Y., Soylu E.M., … Lavkor I., 2024. Disease prevalence, incidence, morphological and molecular characterisation of Lasiodiplodia pseudotheobromae causing collar rot disease on peanut plants in Turkey. Journal of Plant Diseases and Protection 131(5): 1639-1651. https://doi.org/10.1007/s41348-024-00933-x
- Payne G., Yu J., 2010. Ecology, development and gene regulation in Aspergillus flavus. In: Aspergillus: Molecular Biology and Genomics (M. Masayuki, G. Katsuya, ed.), Caister Academic Press, Norfolk, United Kingdom, 157-171.
- Pitt J.I., Dyer S.K., McCammon S., 1991. Systemic invasion of developing peanut plants by Aspergillus flavus. Letters in Applied Microbiology 13(1): 16–20. https://doi.org/10.1111/j.1472-765X.1991.tb00558.x
- Piva G., Battilani P., Pietri A., 2006. Emerging issues in southern Europe: Aflatoxins in Italy. In The Mycotoxin Factbook: Food and Feed Topics (D. Barug, D. Bhatnagar, H. P. van Egmond, J. W. van der Kamp, W. A. van Osenbruggen, A. Visconti, ed.), Wageningen Academic Publishers, Wageningen, Netherlands. https://doi.org/10.3920/978-90-8686-587-1
- Sannino M., Piscopo R., Assirelli A., Serrapica F., Caracciolo G., … Faugno, S. 2020. Evaluation of Arachis hypogaea as new multipurpose crop for central-sud Italy. In: European Biomass Conference and Exhibition Proceedings, On-line, 6-9 July 2020, 155–159.
- Shephard G.S., 2008. Impact of mycotoxins on human health in developing countries. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment 25(2): 146–151. https://doi.org/10.1080/02652030701567442
- Singh U., Gupta S., Gupta M., 2021. A review study on biological ill effects and health hazards of aflatoxins. Asian Journal of Advances in Medical Science 3(1): 1–8. https://mbimph.com/index.php/AJOAIMS/article/view/1834
- Torres A.M., Barros G.G., Palacios S.A., Chulze S.N., Battilani, P., 2014. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Research International 62: 11–19. https://doi.org/10.1016/j.foodres.2014.02.023