Cultivar-specific effects of physical and biological treatments on grapevine trunk disease control and plant vigour
Published 2025-11-03
Keywords
- Biological control,
- black-foot disease,
- hot water treatment,
- Petri disease,
- Trichoderma spp.
- Vitis vinifera L. ...More
How to Cite
Copyright (c) 2025 Esther ABARQUERO, Maria del Pilar MARTINEZ DIZ, Angela DIAZ FERNANDEZ, David GRAMAJE, Emilia DIAZ-LOSADA

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Xunta de Galicia
Grant numbers References TT-2021-083 and TT-2022-100
Abstract
Grapevine trunk diseases (GTDs), including black foot and Petri disease, pose threats to young grapevine establishment. Efficacy of hot water treatment (HWT), Trichoderma atroviride SC1 (TCH), and their combination (HWT + TCH) was assessed for control of GTDs and promotion of early plant development in nine Galician grapevine cultivars. Treatments were applied either prior to grafting or before planting in the field. The treatments were more effective against Petri disease than black foot, with the HWT + TCH combination reducing Petri disease incidence and severity in several cultivars, particularly when applied at the pre-grafting stage. In contrast, limited efficacy was observed against black foot, indicating that post-planting strategies are likely to be required to manage root-infecting pathogens. Plant performance responses were cultivar- and timing-dependent: early treatments generally improved root biomass, whereas late applications occasionally reduced shoot length and root weight. These results highlight the importance of tailoring integrated disease management strategies to specific grapevine cultivars and propagation stages, to optimize nursery outcomes and grapevine health.
Downloads
References
- Agustí-Brisach C., Armengol J., 2013. Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea 52(2): 245–261. https://doi.org/10.14601/Phytopathol_Mediterr-12662
- Berbegal M., Ramón-Albalat A., León M., Armengol J., 2020. Evaluation of long-term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest Management Science 76: 967–977. https://doi.org/10.1002/ps.5605 DOI: https://doi.org/10.1002/ps.5605
- Berlanas C., Ojeda S., López-Manzanares B., Andrés-Sodupe M., Bujanda R., Gramaje D., 2020. Occurrence and diversity of black-foot disease fungi in symptomless grapevine nursery stock in Spain. Plant Disease 104: 94-104 https://doi.org/10.1094/PDIS-03-19-0484-RE DOI: https://doi.org/10.1094/PDIS-03-19-0484-RE
- Bertsch C., Ramírez-Suero M., Magnin-Robert M., Larignon P., Chong J., Abou-Mansour E., Fontaine F., 2013. Grapevine trunk diseases: complex and still poorly understood: Grapevine trunk diseases. Plant Pathology 62: 243–265. https://doi.org/10.1111/j.1365-3059.2012.02674.x DOI: https://doi.org/10.1111/j.1365-3059.2012.02674.x
- Crous P. W., Gams W., Stalpers J. A., Robert V., Stegehuis G. 2004. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50(1): 19-22. https://doi.org/10.4236/aim.2015.52014 DOI: https://doi.org/10.4236/aim.2015.52014
- Eichmeier A., Pečenka J., Peňázová E., Baránek M., Català-García S., Gramaje D., 2018. High-throughput amplicon sequencing-based analysis of active fungal communities inhabiting grapevine after hot-water treatments reveals unexpectedly high fungal diversity. Fungal Ecology 36: 26–38. https://doi.org/10.1016/j.funeco.2018.07.011 DOI: https://doi.org/10.1016/j.funeco.2018.07.011
- Fourie P. H., Halleen F., 2004. Proactive control of Petri disease of grapevine through treatment of propagation material. Plant Disease 88(11): 1241–1245. https://doi.org/10.1094/PDIS.2004.88.11.1241 DOI: https://doi.org/10.1094/PDIS.2004.88.11.1241
- Fourie P. H., Halleen F. 2006. Chemical and biological protection of grapevine propagation material from trunk disease pathogens. European Journal of Plant Pathology 116: 255–265. https://doi.org/10.1007/s10658-006-9057-9 DOI: https://doi.org/10.1007/s10658-006-9057-9
- Glass N. L., Donaldson G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995 DOI: https://doi.org/10.1128/aem.61.4.1323-1330.1995
- Gramaje D., Armengol J., 2011. Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. Plant Disease 95: 1040–1055. https://doi.org/10.1094/PDIS-01-11-0025 DOI: https://doi.org/10.1094/PDIS-01-11-0025
- Gramaje D., Armengol J., 2012. Effects of hot-water treatment, post-hot-water-treatment cooling and cold storage on the viability of dormant grafted grapevines under field conditions. Australian Journal of Grape and Wine Research 18: 158–163. https://doi.org/10.1111/j.1755-0238.2012.00185.x DOI: https://doi.org/10.1111/j.1755-0238.2012.00185.x
- Gramaje D., Di Marco S., 2015. Identifying practices likely to have impacts on grapevine trunk disease infections: a European nursery survey. Phytopathologia Mediterranea 54(2): 313–324. https://doi.org/10.14601/Phytopathol_Mediterr-16317
- Gramaje D., Armengol J., Salazar D., López-Cortés I., García-Jiménez J., 2009. Effect of hot-water treatments above 50°C on grapevine viability and survival of Petri disease pathogens. Crop Protection 28(3): 280–285. https://doi.org/10.1016/j.cropro.2008.11.002 DOI: https://doi.org/10.1016/j.cropro.2008.11.002
- Gramaje D., Mañas F., Lerma M. L., Muñoz R. M., García‐Jiménez J., Armengol J. 2014. Effect of hot‐water treatment on grapevine viability, yield components and composition of must. Australian Journal of Grape and Wine Research 20(1): 144–148. https://doi.org/10.1111/ajgw.12052 DOI: https://doi.org/10.1111/ajgw.12052
- Gramaje D., Úrbez-Torres J. R., Sosnowski M. R.. 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease 102: 12–39. https://doi.org/10.1094/PDIS-04-17-0512-FE DOI: https://doi.org/10.1094/PDIS-04-17-0512-FE
- Halleen F., Fourie P.H., 2016. An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. South African Journal of Enology and Viticulture 37(2): 104–114. https://doi.org/10.21548/37-2-825 DOI: https://doi.org/10.21548/37-2-825
- Işçi B., Kacar E., Altindisli A., 2019. Relationship between hot water treatment (HWT) and vitality criteria on dormant cuttings of Vitis Vinifera cultivars and rootstocks. Erwebs-Obstbau 61: 61–66. https://doi.org/10.1007/s10341-019-00453-1 DOI: https://doi.org/10.1007/s10341-019-00453-1
- Labarga D., Mairata A., Puelles M., Tronchoni J., Eichmeier A., Pou. A, 2025. Vineyard mycobiota shows a local and long-term response to the organic mulches application. Agriculture, Ecosystems and Environment 382: 109506. https://doi.org/10.1016/j.agee.2025.109506 DOI: https://doi.org/10.1016/j.agee.2025.109506
- Lade S. B., Štraus D., Oliva J., 2022. Variation in Fungal Community in Grapevine (Vitis vinifera) Nursery Stock Depends on Nursery, Cultivar, and Rootstock. Journal of Fungi 8(1): 47. https://doi.org/10.3390/jof8010047 DOI: https://doi.org/10.3390/jof8010047
- Leal C., Richet N., Guise J.-F., Gramaje D., Armengol J., Trotel-Aziz P., 2021. Cultivar contributes to the beneficial effects of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 to protect grapevine against Neofusicoccum parvum. Frontiers in Microbiology 12: 726132. https://doi.org/10.3389/fmicb.2021.726132 DOI: https://doi.org/10.3389/fmicb.2021.726132
- Leal C., Gramaje D., Fontaine F., Richet N., Trotel-Aziz P., Armengol J., 2023. Evaluation of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 to control Botryosphaeria dieback and black-foot pathogens in grapevine propagation material. Pest Management Science 79(5): 1674–1683. https://doi.org/10.1002/ps.7339 DOI: https://doi.org/10.1002/ps.7339
- Leal L., Eichmeier A., Stuskova K., Armengol J., Bujanda R., Gramaje D., 2024. Establishment of biocontrol agents and their impact on rhizosphere microbiome and induced grapevine defenses are highly soil-dependent. Phytobiomes Journal 8: 111–127. https://doi.org/10.1094/PBIOMES-08-23-0077-R DOI: https://doi.org/10.1094/PBIOMES-08-23-0077-R
- Legein M., Smets W., Vandenheuvel D., Eilers T., Muyshondt B., Prinsen E., Lebeer S., 2020. Modes of action of microbial biocontrol in the phyllosphere. Frontiers in Microbiology 11: 1619. https://doi.org/10.3389/fmicb.2020.01619 DOI: https://doi.org/10.3389/fmicb.2020.01619
- Martínez-Diz M. P., Díaz-Losada E., Díaz-Fernández Á., Bouzas-Cid Y., Gramaje D., 2021. Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia seriata by commercial biological and chemical methods. Crop Protection 143: 105465. https://doi.org/10.1016/j.cropro.2020.105465 DOI: https://doi.org/10.1016/j.cropro.2020.105465
- Mugnai L., Graniti A., Surico G., 1999. Esca (Black Measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant Disease 83: 404–418. https://doi.org/10.1094/PDIS.1999.83.5.404 DOI: https://doi.org/10.1094/PDIS.1999.83.5.404
- Mutawila C., Fourie P. H., Halleen F., Mostert L., 2011. Grapevine cultivar variation to pruning wound protection by Trichoderma species against trunk pathogens. Phytopathologia Mediterranea 50: S264–S276. https://doi.org/10.14601/Phytopathol_Mediterr-8981
- O’Donnell K., Cigelnik E., 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungusfusariumare nonorthologous. Molecular phylogenetics and evolution 7(1): 103–116. https://doi.org/10.1006/mpev.1996.0376 DOI: https://doi.org/10.1006/mpev.1996.0376
- Pertot I., Prodorutti D., Colombini A., Pasini L., 2016. Trichoderma atroviride SC1 prevents Phaemoniella chlamydospora and Phaeoacremonium aleophilum infection of grapevine plants during the grafting process in nurseries. BioControl 61: 257–267. https://doi.org/10.1007/s10526-016-9723-6 DOI: https://doi.org/10.1007/s10526-016-9723-6
- Savazzini F., Longa C. M. O., Pertot I., Gessler C., 2008. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil. Journal of Microbiological Methods 73(2): 185–194. https://doi.org/10.1016/j.mimet.2008.02.004 DOI: https://doi.org/10.1016/j.mimet.2008.02.004
- Soltekin O., Altindisli A., 2017. Effects of hot water treatments on dormant grapevine propagation materials used for grafter vine production. BIO Web of Conferences 9: 01003. DOI: https://doi.org/10.1051/bioconf/20170901003
- Thambugala K. M., Daranagama D. A., Phillips A. J. L., Kannangara S. D., Promputtha I., 2020. Fungi vs. Fungi in Biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Microbiology 10. https://doi.org/10.3389/fcimb.2020.604923 DOI: https://doi.org/10.3389/fcimb.2020.604923
- Travadon R., Lawrence D. P., Rooney-Latham S., Gubler W. D., Wilcox W. F., Baumgartner K. 2015. Cadophora species associated with wood-decay of grapevine in North America. Fungal Biology 119(1): 53–66. https://doi.org/10.1016/j.funbio.2014.11.002 DOI: https://doi.org/10.1016/j.funbio.2014.11.002
- Úrbez‐Torres J. R., 2011. The status of Botryosphaeriaceae species infecting grapevines. Phytopathologia Mediterranea 50: S5–S45. https://doi.org/10.14601/Phytopathol_Mediterr-9316
- Waite H., May P., 2005. The effects of hot water treatment, hydration and order of nursery operations on cuttings of Vitis vinifera cultivars. Phytopathologia Mediterranea 44(2): 144–152. https://doi.org/10.14601/Phytopathol_Mediterr-1791
- Waite H., Morton L., 2007. Hot water treatment, trunk diseases and other critical factors in the production of high-quality grapevine planting material. Phytopathologia Mediterranea 46: 5–17. https://doi.org/10.3390/jof8050485 DOI: https://doi.org/10.3390/jof8050485
