OnlineFirst Articles
Research Papers

Enhancing epidemiological knowledge of Botryosphaeriaceae in Mexican vineyards

Edelweiss A. RANGEL-MONTOYA
Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860
Ofelia CANDOLFI-ARBALLO
Departamento de parasitología, Universidad Autónoma Agraria Antonio Narro Unidad Laguna (UAAAN-UL), Torreón, Coahuila
José Abraham OBRADOR-SÁNCHEZ
Facultad de Ciencias de la Salud campus Valle Dorado. Universidad Autónoma de Baja California. Valle Dorado, 22890
Cesar VALENZUELA-SOLANO
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Campo Experimental Costa de Ensenada, Ensenada, Baja California, 22880
Rufina HERNANDEZ-MARTINEZ
Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860
Categories

Published 2024-07-17

Keywords

  • Trunk diseases fungi,
  • Botryosphaeria canker,
  • fungi

How to Cite

[1]
E. A. RANGEL-MONTOYA, O. CANDOLFI-ARBALLO, OBRADOR-SÁNCHEZ J. A., C. VALENZUELA-SOLANO, and R. HERNANDEZ-MARTINEZ, “Enhancing epidemiological knowledge of Botryosphaeriaceae in Mexican vineyards”, Phytopathol. Mediterr., pp. 191–206, Jul. 2024.

Abstract

Grapevine cultivation in Mexico is important, especially in the states of Baja California and Coahuila, which are the main wine production regions in the country. Grapevine trunk diseases (GTDs) impact productivity and cause substantial economic losses, with Botryosphaeria dieback being one of the most destructive. This disease is caused by fungi in the Botryosphaeriaceae, including species of Botryosphaeria, Diplodia, Lasiodiplodia, and Neofusicoccum. To date, Lasiodiplodia spp. are the primary Botryosphaeriaceae fungi reported in Mexico. The present study aimed to enhance the epidemiological knowledge of Botryosphaeriaceae in Mexican vineyards. Samples from grapevine plants exhibiting disease symptoms were collected from the states of Baja California and Coahuila. Of a total of 37 Botryosphaeriaceae isolates, six species were identified: Neofusicoccum parvum, N. australe, N. vitifusiforme, Botryosphaeria dothidea, Diplodia corticola, and D. seriata. Neofusicoccum parvum isolates were the most virulent, but were less virulent than previously reported Lasiodiplodia spp. The optimum growth temperatures for N. parvum and B. dothidea were from 28 to 30°C, but 25°C for D. seriata, N. vitifusiforme, and N. australe isolates. Only D. seriata isolates recovered growth when transferred to room temperature after exposure to 37°C or 40°C. This report is the first identification of B. dothidea and N. parvum as causative agents of Botryosphaeria dieback in the vine-growing regions of Mexico.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Agusti-Brisach C., Armengol J., 2013. Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea 52: 245–261.
  2. Alves A., Correia A., Luque J., Phillips A., 2004. Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia 96: 598–613. https://doi.org/10.1080/15572536.2005.11832956.
  3. Amponsah N.T., Jones E.E., Ridgway H.J., Jaspers M.V., 2010. Effects of solar radiation and relative humidity on germination of Botryosphaeriaceae species conidia. New Zealand Plant Protection 63: 28–32. https://doi.org/10.30843/nzpp.2010.63.6610
  4. Batista E., Lopes A., Alves A., 2021., What do we know about Botryosphaeriaceae? An overview of a worldwide cured dataset. Forests 12: 313. https://doi.org/10.3390/f12030313
  5. Bertsch C., Ramírez‐Suero M., Magnin‐Robert M., Larignon P., Chong J., … Fontaine F., 2013. Grapevine trunk diseases: complex and still poorly understood. Plant Pathology 62: 243–265. https://doi.org/10.1111/j.1365-3059.2012.02674.x
  6. Billones‐Baaijens R., Jones E.E., Ridgway H.J., Jaspers M.V., 2013. Virulence affected by assay parameters during grapevine pathogenicity studies with Botryosphaeriaceae nursery isolates. Plant Pathology 62: 1214–1225. https://doi.org/10.1111/ppa.12051
  7. Burgess T., Wingfield M.J., 2002. Impact of fungal pathogens in natural forest ecosystems: a focus on eucalypts. In: Microorganisms in plant conservation and biodiversity (K. Sivasithamparama, K.W. Dixon, R.L. Barrett, ed.), Dordrecht: Springer Netherlands, 285–306.
  8. Burgess T.I., Barber P.A., Mohali S., Pegg G., de Beer W., Wingfield M.J., 2006. Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia 98: 423–435. https://doi.org/10.1080/15572536.2006.11832677
  9. Candolfi-Arballo O., Valenzuela-Solano C., Gubler W.D., Hernández-Martínez R., 2010. Botryosphaeriaceae species associated with grapevine decline in Mexico. In: 7th International Workshop on Grapevine Trunk Diseases, Santa Cruz, Chile, 2010. Phytopathologia Mediterranea 49: 103–133 (abstract).
  10. Carbone I., Kohn L., 1999. A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051
  11. Carlucci A., Cibelli F., Lops F., Raimondo M.L., 2015. Characterization of Botryosphaeriaceae species as causal agents of trunk diseases on grapevines. Plant Disease 99: 1678–1688. https://doi.org/10.1094/PDIS-03-15-0286-RE
  12. CONAGUA Comisión Nacional del Agua (2023) Red de estaciones climatológicas, Ciudad de México México: Servicio Meteorológico Nacional. https://smn.conagua.gob.mx/
  13. Czemmel S., Galarneau E.R., Travadon R., McElrone A.J., Cramer G.R., Baumgartner K., 2015. Genes expressed in grapevine leaves reveal latent wood infection by the fungal pathogen Neofusicoccum parvum. PloS One 10: e0121828. https://doi.org/10.1371/journal.pone.0121828
  14. Dardani G., Mugnai L., Bussotti S., Gullino M.L., Guarnaccia V., 2023. Grapevine dieback caused by Botryosphaeriaceae species, Paraconiothyrium brasiliense, Seimatosporium vitis-viniferae and Truncatella angustata in Piedmont: characterization and pathogenicity. Phytopathologia Mediterranea 60: 283–306. https://doi.org/10.36253/phyto-14154
  15. Elena G., Garcia‐Figueres F., Reigada S., Luque J., 2015. Intraspecific variation in Diplodia seriata isolates occurring on grapevines in Spain. Plant Pathology 64: 680–689. https://doi.org/10.1111/ppa.12296
  16. Fontaine F., Pinto C., Vallet J., Clément C., Gomes A.C., Spagnolo A., 2016. The effects of grapevine trunk diseases (GTDs) on vine physiology. European Journal of Plant Pathology 144: 707–721. https://doi.org/10.1007/s10658-015-0770-0
  17. Gramaje D., Armengol J., 2011. Fungal trunk pathogens in the grapevine propagation process potencial inoculum sources, detection, identification, and management strategies. Plant Disease 95: 1040–1055. https://doi.org/10.1094/PDIS-01-11-0025
  18. Gramaje D., Úrbez-Torres J.R., Sosnowski M.R., 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease 102: 12–39. https://doi.org/10.1094/PDIS-04-17-0512-FE
  19. Graniti A., Mugnai L., Surico G. 2000. Esca of grapevine: a disease complex or a complex of diseases. Phytopathologia Mediterranea 39: 1000–1005. https://doi.org/10.14601/Phytopathol_Mediterr-1539
  20. Gubler W.D., Rolshausen P.E., Trouillase F.P., Úrbez J.R., Voegel T., 2005. Grapevine trunk diseases in California. Practical Winery & Vineyard Jan/Feb: 6–25.
  21. Hall T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium series 41: 95–98.
  22. Hrycan J., Hart M., Bowen P., Forge T., Úrbez-Torres J.R., 2020. Grapevine trunk disease fungi: their roles as latent pathogens and stress factors that favour disease development and symptom expression. Phytopathologia Mediterranea 59: 395–424. https://doi.org/10.14601/Phyto-11275
  23. Kimura M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. https://doi.org/10.1007/BF01731581
  24. Kumar S., Stecher G., Li M., Knyaz C., Tamura K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096
  25. Larignon P., Fulchic R., Cere L., Dubos B., 2001. Observation on black dead arm in French vineyards. Phytopathologia Mediterranea 40: 336–342. https://doi.org/10.14601/Phytopathol_Mediterr-1629
  26. Lawrence D.P., Travadon R., Nita M., Baumgartner K., 2017. TrunkDiseaseID. org: A molecular database for fast and accurate identification of fungi commonly isolated from grapevine wood. Crop Protection 102: 110–117. https://doi.org/10.1016/j.cropro.2017.08.017
  27. Lazzizera C., Frisullo S., Alves A., Phillips A.J.L., 2008. Morphology, phylogeny and pathogenicity of Botryosphaeria and Neofusicoccum species associated with drupe rot of olives in southern Italy. Plant Pathology 57: 48–956. https://doi.org/10.1111/j.1365-3059.2008.01842.x
  28. Marsberg A., Kemler M., Jami F., Nagel J. H., Postma‐Smidt A., … Slippers B., 2017. Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Molecular Plant Pathology 18: 477–488. https://doi.org/10.1111/mpp.12495
  29. Mehl J., Wingfield M.J., Roux J., Slippers B., 2017. Invasive everywhere? Phylogeographic analysis of the globally distributed tree pathogen Lasiodiplodia theobromae. Forests 8: 1–22. https://doi.org/10.3390/f8050145
  30. Mohali S., Burgess T.I., Wingfield M.J., 2005. Diversity and host association of the tropical tree endophyte Lasiodiplodia theobromae revealed using simple sequence repeat markers. Forest Pathology 35: 385–396. https://doi.org/10.1111/j.1439-0329.2005.00418.x
  31. Muñoz-Adalia E.J., Colinas C., 2021. Susceptibility of cork oak (Quercus suber) to canker disease caused by Diplodia corticola: when time is of the essence. New Forests 52: 863–873. https://doi.org/10.1007/s11056-020-09829-8
  32. Muñoz-Adalia E.J., Uppara A.B., Albó D., Meijer A., Colinas C., 2023. Cork harvest planning and climate: high air humidity favors availability of airborne inoculum of Diplodia corticola. Forest Ecology and Management 536: 120935. https://doi.org/10.1016/j.foreco.2023.120935
  33. Paolinelli-Alfonso M., Serrano-Gomez C., Hernandez-Martinez R., 2015. Occurrence of Eutypella microtheca in grapevine cankers in Mexico. Phytopathologia Mediterranea 54: 86–93. https://doi.org/10.14601/Phytopathol_Mediterr-14998
  34. Phillips A.J.L. 2002. Botryosphaeria species associated with diseases of grapevines in Portugal. Phytopathologia Mediterranea 4:3–18.
  35. Phillips A.J.L., Alves A., Abdollahzadeh J., Slippers B., Wingfield, M.J., … Crous P.W., 2013. The Botryosphaeriaceae : genera and species known from culture. Studies in Mycology 76: 51–167. https://doi.org/10.3114/sim0021
  36. Pintos Varela C., Fernández V.R., Casal O.A., Vázquez J.M., 2011. First report of cankers and dieback caused by Neofusicoccum mediterraneum and Diplodia corticola on grapevine in Spain. Plant Disease 95: 1315–1315. https://doi.org/10.1094/PDIS-05-11-0429
  37. Pitt W.M., Huang R., Steel C.C., Savocchia S., 2010. Identification, distribution and current taxonomy of Botryosphaeriaceae species associated with grapevine decline in New South Wales and South Australia. Australian Journal of Grape and Wine Research 16: 258–271. https://doi.org/10.1111/j.1755-0238.2009.00087.x
  38. Ploetz R.C., Pérez-Martínez J.M., Palmateer A.J., Tarnowski T.L., 2009. Influence of temperature, light intensity, and isolate on the development of Neofusicoccum parvum–induced dieback of Eugenia, Syzygium paniculatum. Plant Disease 93: 804–808. https://doi.org/10.1094/PDIS-93-8-0804
  39. Rangel-Montoya E.A., Paolinelli M., Rolshausen P.E., Valenzuela-Solano, C., Hernandez-Martinez R., 2021. Characterization of Lasiodiplodia species associated with grapevines in Mexico. Phytopathologia Mediterranea 60: 237–251. https://doi.org/10.36253/phyto-12576
  40. Rathnayaka A.R., Chethana K.T., Phillips A.J., Liu J.K., Samarakoon M.C., … Zhao C.L., 2023. Re-evaluating Botryosphaeriales: ancestral state reconstructions of selected characters and evolution of nutritional modes. Journal of Fungi 9: 184. https://doi.org/10.3390/jof9020184
  41. Rolshausen P.E., Akgül D.S., Perez R., Eskalen A., Gispert C., 2013. First report of wood canker caused by Neoscytalidium dimidiatum on grapevine in California. Plant Disease 97: 1511–1511. https://doi.org/10.1094/PDIS-04-13-0451-PDN
  42. SIAP Servicio de Información y Estadística Agroalimentaria y Pesquera, 2023. Ministerio de Agricultura de Mexico, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA).
  43. Slippers B., Fourie G., Crous P.W., Coutinho T.A., Wingfield B.D., Wingfield M.J., 2004. Multiple gene sequences delimit Botryosphaeria australis sp. nov. from B. lutea. Mycologia 96: 1030–1041. https://doi.org/10.1080/15572536.2005.11832903
  44. Slippers B., Wingfield M., 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews 21: 90–106. https://doi.org/10.1016/j.fbr.2007.06.002
  45. Slippers B., Smit W.A., Crous P.W., Coutinho T.A., Wingfield B.D., Wingfield M.J., 2007. Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world. Plant Pathology 56: 128–139. https://doi.org/10.1111/j.1365-3059.2006.01486.x
  46. Stempien E., Goddard M.L., Wilhelm K., Tarnus C., Bertsch C., Chong, J., 2017. Grapevine Botryosphaeria dieback fungi have specific aggressiveness factor repertory involved in wood decay and stilbene metabolization. PloS One 12: e0188766. https://doi.org/10.1371/journal.pone.0188766
  47. Téliz D., Valle P., 1979. Eutypa dieback in Mexican vineyards. Plant Disease Reporter 63: 312–314.
  48. Thompson J.D., Higgins D.G., Gibson T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.
  49. Úrbez-Torres J.R., Leavitt G.M., Voegel T.M., Gubler W.D., 2006. Identification and distribution of Botryosphaeria spp. associated with grapevine cankers in California. Plant Disease 90: 1490–1503. https://doi.org/10.1094/PD-90-1490
  50. Úrbez-Torres J.R., Leavitt G.M., Guerrero J.C., Guevara J., Gubler W.D., 2008. Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agents of bot canker disease of grapevines in Mexico. Plant Disease 92: 519–529. https://doi.org/10.1094/PDIS-92-4-0519
  51. Úrbez-Torres J.R., Adams P., Kamas J., Gubler W.D., 2009. Identification, incidence, and pathogenicity of fungal species associated with grapevine dieback in Texas. American Journal of Enology and Viticulture 60: 497–507. https://doi.org/10.5344/ajev.2009.60.4.497
  52. Úrbez-Torres J.R., Peduto F., Rooney-Latham S., Gubler W.D., 2010a. First report of Diplodia corticola causing grapevine (Vitis vinifera) cankers and trunk cankers and dieback of canyon live oak (Quercus chrysolepis) in California. Plant Disease 94: 785–785. https://doi.org/10.1094/PDIS-94-6-0785A
  53. Úrbez-Torres J.R., Bruez E., Hurtado J., Gubler W.D., 2010b. Effect of temperature on conidial germination of Botryosphaeriaceae species infecting grapevines. Plant Disease, 94: 1476–1484. https://doi.org/10.1094/PDIS-06-10-0423
  54. Úrbez-Torres J.R., 2011. The status of Botryosphaeriaceae species infecting grapevines. Phytopathologia Mediterranea 50: S5–S45.
  55. van Niekerk J.M., Crous P.W., Groenewald J.Z., Fourie P.H., Halleen F., 2004. DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines. Mycologia 96: 781–798. https://doi.org/10.1080/15572536.2005.11832926
  56. van Niekerk J.M., Fourie P.H., Halleen F., Crous P.W., 2006. Botryosphaeria spp. as grapevine trunk disease pathogens. Phytopathologia Mediterranea 45: 43–54.
  57. Wagner D.B., Furnier G.R., Saghai-Maroof M.A., Williams SM, Dancik B.P., Allard R.W., 1987. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. PNAS 84: 2097–2100.
  58. Waite H., Armengol J., Billones-Baaijens R., Gramaje D., Hallen F., … Smart R., 2018. A protocol for the management of grapevine rootstock mother vines to reduce latent infections by grapevine trunk pathogens in cuttings. Phytopathologia Mediterranea 57: 384–398. https://doi.org/10.14601/Phytopathol_Mediterr-22772
  59. White T.J., Bruns T., Lee S.J.W.T., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a Guide to Methods and Applications 18: 315–322.
  60. Xiao J., Zhang Q., Gao Y.Q., Tang J.J., Zhang A.L., Gao J.M., 2014. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. Journal of Agricultural and Food Chemistry 62: 3584–3590. https://doi.org/10.1021/jf500054f