Vol. 60 No. 2 (2023): including 12th Special issue on Grapevine Trunk Diseases
Research papers - 12th Special Issue on Grapevine Trunk Diseases

Heritage grapevines as sources of biological control agents for Botryosphaeria dieback pathogens

Posgrado Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, C.P. 22860 Zona Playitas, Ensenada, Baja California
CONACYT-Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860
Edelweiss Airam RANGEL-MONTOYA
Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860
Sitio Experimental Costa de Ensenada. INIFAP. Ensenada, Baja California
Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860

Published 2023-05-12


  • Bacillus,
  • Trichoderma,
  • Grapevine trunk diseases,
  • Botryosphaeriaceae

How to Cite

DELGADO-RAMÍREZ C. S., SEPÚLVEDA E., E. A. RANGEL-MONTOYA, C. VALENZUELA-SOLANO, and R. HERNANDEZ-MARTINEZ, “Heritage grapevines as sources of biological control agents for Botryosphaeria dieback pathogens”, Phytopathol. Mediterr., vol. 60, no. 2, pp. 115–134, May 2023.

Funding data


Grapevine trunk diseases cause severe damage in grapevines. Management strategies focus on protection of grapevine pruning wounds using chemical fungicides or biological control agents. Botryosphaeria dieback, caused mainly by Lasiodiplodia spp., is one of the main trunk diseases in northwest Mexico. This study obtained endophytic bacteria and fungi from the heritage grapevine Vitis vinifera cv. ‘Mission’ for potential biological control of Botryosphaeria dieback. A collection of 135 bacterial and 37 fungal isolates were obtained and initially tested for antagonistic activity against Lasiodiplodia brasiliensis. The most promising isolates belonging to Trichoderma and Bacillus spp. were selected and characterized to determine their modes of action. Bacillus isolates produced volatile organic compounds that inhibited growth of Neofusicoccum parvum, and diffusible organic compounds with antifungal effects against L. brasiliensis and N. parvum. Trichoderma isolates produced diffusible organic compounds and were mycoparasites. In greenhouse assays, plants inoculated with three Trichoderma asperellum isolates (T20BCMX, EF09BCMX, and EF11BCMX), B. amyloliquefaciens (BEVP26BCMX) or Bacillus sp. (rbES015), applied preventively in soil, gave up to 50% smaller necrotic lesions when compared with the plants inoculated only with L. brasiliensis. In the field, plants inoculated with three Bacillus isolates (BEVP02BCMX, BEVP26BCMX, BEVP31BCMX) or five Trichoderma (T11BCMX, T15BCMX, T17BCMX, T20BCMX, and EF11BCMX) had lesions up to four times smaller than control plants inoculated only with L. brasiliensis. This study has demonstrated the potential of heritage grapevines to provide biological control agents for Botryosphaeria dieback.


Download data is not yet available.


Metrics Loading ...


Abdullah H.A.S., Mohanad K.M.A., Muhammed A.H.A.B., Zulfiqar A., 2012. First report of grapevine dieback caused by Lasiodiplodia theobromae and Neoscytalidium dimidiatum in Basrah, Southern Iraq. African Journal of Biotechnology 11(95): 16165–16171. DOI: 10.5897/AJB12.010
Afzal I., Shinwari Z.K., Sikandar S., Shahzad S., 2019. Plant Beneficial Endophytic Bacteria: Mechanisms, Diversity, Host Range and Genetic Determinants. Microbiological Research 221: 36–49. DOI: 10.1016/j.micres.2019.02.001
Agrawal T., Kotasthane, A.S.K., 2012. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in central India. Springer Plus 1(73): 1–10. DOI: 10.1186/2193-1801-1-73
Ahmad F., Ahmad I., Khan M.S., 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research 163: 173–181. DOI: 1016/j.micres,2006.04.001
Almeida A.B., de Concas J., Campos M.D., Materatski P., Varanda, C., … Félix M.D.R., 2020. Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region. Biology 9(420): 1–23. DOI: 10.3390/biology9120420
Andrade S.G., Arón N., Flores F., 2013. Matriz de insumo producto vitivinícola de Baja California México. Revista de Economía 30(81): 57–57.
Bailey B.A., Bae H., Strem M.D., Crozier J., Thomas S.E., … Holmes K.A., 2008. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control 46(1): 24–35. DOI: 10.1016/j.biocontrol.2008.01.003
Bapiri A., Asgharzadeh A., Mujallali H., Khavazi K., Pazira E., Graduated P.D., 2012. Evaluation of Zinc solubilization potential by different strains of Fluorescent Pseudomonads. Journal of Applied Sciences and Environmental Management. 16(3): 295–298.
Bertsch C., Ramirez-Suero M., Magnin-Robert M., Larignon, P., Chong, J., … Fontaine, F., 2013. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathology 62: 243–265. DOI: 10.1111/j.1365-3059.2012.02674.x
Billones-Baaijens R., Savocchia S., 2019. A review of Botryosphaeriaceae species associated with grapevine trunk diseases in Australia and New Zealand. Australasian Plant Pathology 48: 3–18. DOI: 10.1007/s13313-018-0585-5
Blundell R., Arreguin M., Eskalen A., 2021. In vitro evaluation of grapevine endophytes, epiphytes and sap microorganisms for potential use to control grapevine trunk disease pathogens. Phytopathologia Mediterranea 60(3): 535–548. DOI: 10.36253/phyto-12500
Bustamante M.I., Elfar K., Eskalen A., 2022. Evaluation of the Antifungal Activity of Endophytic and Rhizospheric Bacteria against Grapevine Trunk Pathogens. Microorganisms 10(10): 2035. DOI: 10.3390/microorganisms10102035
Crowley W.K., 1989. The Growth of the Mexican Wine Industry. Yearbook of the Association of Pacific Coast Geographers 51: 25–47.
Delgado-Ramírez C.S., Hernández-Martínez R., Sepúlveda E., 2021. Rhizobacteria Associated with a Native Solanaceae Promote Plant Growth and Decrease the Effects of Fusarium oxysporum in Tomato. Agronomy 11(3): 579. DOI: 10.3390/agronomy11030579
Díaz-Gutiérrez C., Arroyave C., Llugany M., Poschenrieder C., Martos S., Peláez C. 2021. Trichoderma asperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biological Control 155: 104537. DOI: 10.1016/j.biocontrol.2021.104537
Dini-Andreote F., 2020. Endophytes: The Second Layer of Plant Defense. Trends in Plant Science 25(4): 319–322. DOI: 10.1016/j.tplants.2020.01.007
Druzhinina I., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B.A., Kenerley C.M., … Kubicek C.P., 2011. Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology 9: 749–759. DOI: 10.1038/nrmicro263
Druzhinina I., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B.A., Kenerley C.M., … Kubicek C.P., 2011. Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology 9: 749–759. DOI: 10.1038/nrmicro2637
Finkel O.M., Castrillo G., Herrera-Paredes S., Salas González I., Dangl J.L., 2017. Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology 38: 155–163. DOI: 10.1016/j.pbi.2017.04.018
Frank J.A., Reich, C.I., Sharma S., Weisbaum J.S., Wilson B.A., Olsen G.J., 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology 74(8): 2461–2470. DOI: 10.1128/AEM.02272-07.
Frascella A., Sarrocco S., Mello A., Venice F., Salvatici C., … Della Rocca G., 2022. Biocontrol of Phytophthora xcambivora on Castanea sativa: Selection of Local Trichoderma spp. isolates for the Management of Ink Disease. Forests 13: 1065. DOI: 10.3390/fl3071065
Gotor-Vila A., Teixidó N., Di Francesco A., Usall J., Ugolini L., … Mari M., 2017. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiology 64: 219–225. DOI: 10.1016/j.fm.2017.01.006
Gramaje D., Úrbez-Torres J.R., Sosnowski M.R., 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and prospects. Plant Disease 102: 12–39. DOI: 10.1094/PDIS-04-17-0512-FE
Guevara-Avendaño E., Carrillo J.D., Ndinga-Muniania C., Moreno K., Méndez-Bravo A., … Reverchon, F., 2018. Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 111(4): 563–572. doi: 10.1007/s10482-017-0977-5.
Guevara-Avendaño E., Bravo-Castillo K.R., Monribot-Villanueva J.L., Kiel-Martínez A.L., Ramírez-Vázquez M., … Reverchon F., 2020. Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium. Brazilian Journal of Microbiology 51(3): 861–873. DOI: 10.1007/s42770-020-00249-6.
Gupta R., Singal R., Shankar A., Kuhad R.C., Saxena R.K., 1994. A modified plate assay for screening phosphate solubilizing microorganisms. Journal of General and Applied Microbiology 40(3): 255–260. DOI: 10.2323/jgam.40255
Haidar R., Roudet J., Bonnard O., Dufour M.C., Corio-Costet M.F., … Fermaud M., 2016. Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiological Research 192: 172–184. DOI: 10.1016/j.micres.2016.07.003
Haidar R., Amira Y., Roudet J., Marc F., Patrice R., 2021. Application methods and modes of action of Pantoea agglomerans and Paenibacillus sp. to control the grapevine trunk disease-pathogen, Neofusioccum parvum. OENO One 55(3): 1–16. DOI: 10.20870/oeno-one.2021.55.3.4530
Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M., 2004. Trichoderma specie opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2: 43–56. DOI: 10.1038/nrmicro797
INEGI, 2017. Anuario Estadístico y Geográfico de Baja California 2017. Available at https://www.inegi.org.mx/contenido/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/anuarios_2017/702825094874.pdf. Accessed July 20, 2022
Jacob J., Krishnan G.V., Thankappan D., Amma D.K., 2020. Endophytic bacterial strains induced systemic resistance in agriculturally important crop plants. In: Microbial Endophytes (Ajay K., Radhakrishnan E.K. ed.), Elsevier, Duxford, Cambridge, United Kingdom, 75–105. DOI: 10.1016/B978-0-12-819654-0.00004-1
Kumar S., Stecher G., Li M., Knyaz C., Tamura K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35 (6): 1547–1549. DOI: 10.1093/molbev/msy096.
Langa-Lomba N., Martín-Ramos P., Casanova-Gascón J., Julián-Lagunas C., González-García V., 2022. Potential of Native Trichoderma Strains as Antagonists for the Control of Fungal Wood Pathologies in Young Grapevine Plants. Agronomy 12 (2): 336. DOI: 10.3390/agronomy12020336
Leal C., Richet N., Guise J.F., Gramaje D., Armengol J., … Trotel-Aziz P., 2021. Cultivar Contributes to the Beneficial Effects of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 to Protect Grapevine Against Neofusicoccum parvum. Frontiers in Microbiology 12: 726132. DOI: 10.3389/fmicb.2021.726132
Leiva S., Oliva M., Hernández E., Chuquibala B., Rubio K., García, F., Torres de la Cruz M., 2020. Assessment of the Potential of Trichoderma spp. Strains Native to Bagua (Amazonas, Peru) in the Biocontrol of Frosty Pod Rot (Moniliophthora roreri). Agronomy 10 (9): 1376. DOI: 10.3390/agronomy10091376
Lipový B., Raška F., Kocmanová I., Hanslianová M., Hladík M., … Macháček C., 2021. Trichoderma longibrachiatum and Aspergillus fischeri Infection as a Cause of Skin Graft Failure in a Patient with Critical Burns after Liver Transplantation. Journal of Fungi 7(6):487. DOI: 10.3390/jof7060487
Lynne A.M., Haarmann D., Louden B.C., 2011. Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology & Biology Education 12: 51–53. DOI: 10.1128/jmbe.v12i1.249
Magoni C., 2009. Historia de la vid y el vino en la Península de la Baja California. 1st ed. Universidad Iberoamericana, Tijuana, Mexico, 283 pp.
Martínez-Diz M. del P., Díaz-Losada E., Díaz-Fernández Á., Bouzas-Cid Y., Gramaje D. 2020. Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia seriata by commercial biological and chemical methods. Crop Protection 143: 105465. DOI: 10.1016/j.cropro.2020.105465
Mayo-Prieto S., Campelo M.P., Lorenzana A., Rodríguez-González A., Reinoso B., … Casquero P.A., 2020. Antifungal activity and bean growth promotion of Trichoderma strains isolated from seed vs soil. European Journal of Plant Pathology 158: 817–828. DOI: 10.1007/s10658-020-02069-8
Méndez-Bravo A., Cortazar-Murillo E.M., Guevara-Avendaño E., Ceballos-Luna O., Rodríguez-Haas B., … Reverchon F., 2018. Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLOS ONE 13(3): e0194665. DOI: 10.1371/journal.pone.0194665
Myoken Y., Sugata T., Fujita Y., Asaoku H., Fujihara M., Mikami Y. 2002. Fatal necrotizing stomatitis due to Trichoderma longibrachiatum in a neutropenic patient with malignant lymphoma: a case report. International Journal of Oral and Maxillofacial Surgery, 31(6): 688-691. DOI: 10.1054/ijom.2001.0211.
Mondello V., Larignon P., Armengol J., Kortekamp A., Vaczy K., … Fontaine F., 2018. Management of grapevine trunk diseases: Knowledge transfer, current strategies and innovative strategies adopted in Europe. Phytopathologia Mediterranea 57(3): 369–383. DOI:10.14601/Phytopathol_Mediterr-23942
Mukherjee P. K., Mendoza-Mendoza A., Zeilinger S., Horwitz B.A., 2022. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews 39: 15–33. DOI: 10.1016/j.fbr.2021.11.004
Mutawila C., Halleen F., Mostert L., 2016. OptimiSation of time of application of Trichoderma biocontrol agents for protection of grapevine pruning wounds. Australian Journal of Grape and Wine Research 22(2): 279–287. DOI: 10.1111/ajgw.12218
Niem J.M., Billones-Baaijens R., Stodart B., Savocchia S., 2020. Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases. Frontiers in Microbiology 11: 477. DOI: 10.3389/fmicb.2020.00477
Nusaibah A., Musa H., 2019. A Review Report on the Mechanism of Trichoderma spp. as Biological Control Agent of the Basal Stem Rot (BSR) Disease of Elaeis guineensis. In Trichoderma Trichoderma: The Most Widely Used Fungicide (Shah M.M., Sharif U., Buhari R.T., ed), IntechOpen, London, United Kingdom, 1–12. DOI: 10.5772/intechopen.84469
O’Donnell K., Kistlerr H.C., Cigelnik E., Ploetz R.C., 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95(5): 2044–2049. DOI: 10.1073/pnas.95.5.2044
Pikovskaya R.I., 1948. Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology 17: 362–370.
Pimentel M.F., Arnao E., Warner A.J., Subedi A., Rocha L.F., … Fakhoury, A., 2020. Trichoderma isolates inhibit Fusarium virguliforme growth, reduce root rot, and induce defense-related genes on soybean seedlings. Plant Disease 104(7): 1949–1959. DOI: 10.1094/PDIS-08-19-1676-RE
Poudel M., Mendes R., Costa L.A.S., Bueno C.G., Meng Y., … Martins S.J., 2021. The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation. Frontiers in Microbiology 12: 744512. DOI: 10.3389/fmicb.2021.743512
Rangel-Montoya E.A., 2021. Characterization, evaluation of the colonization process and search for biological control strategies of fungi of the Botryosphaeriaceae family associated with grapevines in Mexico. PhD Thesis, Centro de Investigación Científica y de Educación superior de Ensenada, Baja California, 103.
Rangel-Montoya E.A., Paolinelli M., Rolshausen P.E., Valenzuela-Solano C., Hernandez-Martinez R., 2021. Characterization of Lasiodiplodia species associated with grapevines in Mexico. Phytopathologia Mediterranea 60 (2): 237–251. DOI: 10.36253/phyto-12576
Rangel-Montoya E.A., Delgado-Ramírez C.S. Sepulveda E., Hérnandez-Martínez R., 2022. Biocontrol of Macrophomina phaseolina using Bacillus amyloliquefaciens strains in Cowpea (Vigna unguiculata L.). Agronomy 12 (3): 676. DOI: 10.3390/agronomy12030676
Reyes-Figueroa O., Ortiz-García C.F., Torres-de la Cruz M., Lagunes-Espinoza L.D.C., Valdovinos-Ponce G., 2016. Trichoderma species from the cacao agroecosystem with biocontrol potential of Moniliophthora roreri. Revista Chapingo serie ciencias forestales y del ambiente 22 (2): 149-163. DOI: 10.5154/r.rchscfa.2015.08.036
Riseh R.S., Ebrahimi-Zarandi M., Gholizadeh-Vazvani M., Skorik Y.A. 2021. Reducing Drought Stress in Plants by Encapsulating Plant Growth-Promoting Bacteria with Polysaccharides. International Journal of Molecular Sciences 22(23): 12979. DOI: 10.3390/ijms222312979
Rocha-Ramirez V., Omero C., Chet I., Horwitz B.A., Herrera-Estrella A., 2002. Trichoderma atroviride G-protein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryotic Cell 1(14): 594-605. DOI: 10.1128/EC.14.594-605.2002
Ruano-Rosa D., Cazorla F.M., Bonilla N., Martín-Pérez R., De Vicente A., López-Herrera C.J., 2014. Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. European Journal of Plant Pathology 138: 751–762. DOI: 10.1007/s10658-013-0347-8
Salvatierra-Martinez R., Arancibia W., Araya M., Aguilera S., Olalde V., … Stoll A., 2018. Colonization ability as an indicator of enhanced biocontrol capacity an example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes. Journal of Phytopathology 166(9): 601–612. DOI: 10.1111/JPH.12718
Schwyn B., Neilands J.B., 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1): 47–56. DOI: 10.1016/003-2697(87)90612-9
SEFOA, 2011. Estudio Estadístico Sobre Producción de Uva en Baja California. Available at: https://www.nacionmulticultural.unam.mx/empresasindigenas/docs/1873.pdf
Silva-Valderrama I., Toapanta D., Miccono M. de los A., Lolas M., Díaz G.A., … Castro A., 2021. Biocontrol Potential of Grapevine Endophytic and Rhizospheric Fungi Against Trunk Pathogens. Frontiers in Microbiology 11: 614620. DOI: 10.3389/fmicb.2020.614620
Spagnolo A., Magnin-Robert M., Alayi T.D., Cilindre C., Schaeffer-Reiss C., … Fontaine F., 2014. Differential responses of three grapevine cultivars to Botryosphaeria dieback. Phytopathology 104(10): 1021–1035. DOI: 10.1094/PHYTO-01-14-0007-R
Sood M., Kapoor D., Kumar V., Sheteiwy M.S., Ramakrishnan M., … Sharma A., 2020. Trichoderma: The "Secrets" of a Multitalented Biocontrol Agent. Plants 18(6): 762. DOI: 10.3390/plants9060762
Sutarman S., Miftahurrohmat A., Nurmalasari I.R., Prihatinnigrum A.E., 2021. In Vitro Evaluation of The Inhibitory Power of Trichoderma harzianum Against Pathogens that Cause Anthracnose in Chili. Journal of Physics Conference Series 1764(1): 012026. DOI: 10.1088/1742-6596/1764/1/012026
Úrbez-Torres J.R., Gubler W.D., 2009. Pathogenicity of Botryosphaeriaceae species isolated from grapevine cankers in California. Plant Disease 93(6): 584–592. DOI: 10.1094/PDIS-93-6-0584
Úrbez-Torres J.R., Peduto F., Striegler R.K., Urrea-Romero K.E., Rupe J.C., … Gubler W.D., 2012. Characterization of fungal pathogens associated with grapevine trunk diseases in Arkansas and Missouri. Fungal Diversity 52: 169–189. DOI: 10.1007/s13225-11-0110-4
Úrbez-Torres J.R., Tomaselli E., Pollard-Flamand J., Boulé J., Gerin D., Pollastro M., 2020. Characterization of Trichoderma isolates from southern Italy. And their potential biocontrol activity against grapevine trunk disease fungy. Phytopathologia Mediterranea 59(3): 425–439. DOI: 10.14601/Phyto-11273
Vasiliki E.G., Despoina M., Konstantinos M., Christos D., Aikaterini G., … Xanthi T., 2021First case of pneumonia-parapneumonic effusion due to Trichoderma longibrachiatum. IDCases 25: e01239. DOI: 10.1016/j.idcr.2021.e01239.
Wagner D.B., Furnier G.R., Saghai-Maroof M.A., Williams S.M., Dancik B.P., Allard R.W., 1987. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proceedings of the National Academy of Sciences of the United States of America 84(7): 2097–2100. DOI: 10.1073/pnas.84.7.2097
Walker M.A., Heinitz C., Riaz S., Uretsky J., 2019. Grape Taxonomy and Germplasm. In: Compendium of plant genomes (D. Cantu M. A. Walker ed.), Springer, Cham, California, United States of American, 25–38. DOI: 10.1007/978-3-030-19601-2
Zehra A., Raytekar N.A., Meena M., Swapnil P., 2021. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Current Research in Microbial Sciences 2: 100054. DOI: 10.1016/j.crmicr.2021.100054
Zhang W., Groenewald J.Z., Lombard L., Schumacher R.K., Phillips A.J.L., Crous P.W., 2021. Evaluating species in Botryosphaeriales. Persoonia. 46: 63–115. DOI: 10.3767/persoonia.2021.46.03
Zhao X., Zhou J., Tian R., Liu Y., 2022. Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Frontiers in Microbiology 13: 922450. DOI: 10.3389/fmicb.2022.922450
Zheng B.X., Ibrahim M., Zhang D.P., Bi Q.F., Li H.Z., … Yang X.R., 2018. Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express 8(1): 47. DOI: 10.1186/s13568-018-0575-6