Identification of pathogens causing brown rot of stone fruit in Cuneo province (Italy) and assessment of sensitivity to azoxystrobin, cyprodinil, fenhexamid, fludioxonil, and tebuconazole
Published 2023-12-30
Keywords
- Fungal characterization,
- Chemical control,
- Monilinia
How to Cite
Copyright (c) 2023 Greta DARDANI, Vladimiro GUARNACCIA, Luca NARI, Stefanos I. TESTEMPASIS, George S. KARAOGLANIDIS, M. Lodovica GULLINO
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Monilinia spp. cause brown rot and blossom blight of stone fruit. This study characterized the diversity of Monilinia spp. associated with stone fruit rots in the Cuneo province, the major fruit production area in Piedmont, and assessed their sensitivity to azoxystrobin, cyprodinil, fenhexamid, fludioxonil and tebuconazole. Species diversity was determined by PCR amplification and sequencing of isolate internal transcribed spacer (ITS) regions. Sensitivity to fungicides was determined by measuring in vitro mycelium growth on fungicide-amended media. Fifty isolates were obtained from apricot, cherry, or peach fruits with typical brown rot symptoms. Thirteen isolates were identified as M. fructicola, and 37 as M. laxa. Nine isolates of Monilinia laxa and two of M. fructicola had resistance factor (RF) values greater than 10 for different fungicides. The greatest (RF) value (48.96) was measured for azoxystrobin against the M. fructicola isolate CVG 1514. Among the M. laxa isolates, isolate CVG 1547 had the greatest RF value to cyprodinil, while isolate CVG 1709 had RF values greater than 10 for cyprodinil and tebuconazole. A systematic and wider sampling should be carried out in the Piedmont region to determine the distribution of fungicide resistant Monilinia spp. in stone fruit crops. The use of site-specific fungicides remains the most effective strategy for control brown rot, and continued monitoring for fungicide resistance within Monilinia spp. populations is recommended.
Downloads
Metrics
References
- Abate D., Pastore C., Gerin D., De Miccolis Angelini R.M., Rotolo C., … Faretra F., 2018. Characterization of Monilinia spp. Populations on Stone Fruit in South Italy. Plant Disease 102: 1708–1717. https://doi.org/10.1094/PDIS-08-17-1314-RE DOI: https://doi.org/10.1094/PDIS-08-17-1314-RE
- Amiri A., Brannen P.M., Schnabel G., 2010. Reduced Sensitivity in Monilinia fructicola Field Isolates from South Carolina and Georgia to Respiration Inhibitor Fungicides. Plant Disease 94: 737–743. https://doi.org/10.1094/PDIS-94-6-0737 DOI: https://doi.org/10.1094/PDIS-94-6-0737
- Boehm E.W.A., Ma Z., Michailides T.J., 2001. Species-Specific Detection of Monilinia fructicola from California Stone Fruits and Flowers. Phytopathology 91: 428–439. https://doi.org/10.1094/PHYTO.2001.91.5.428 DOI: https://doi.org/10.1094/PHYTO.2001.91.5.428
- Bustos Lòpez M., Spadaro D., Garibaldi A., Gullino M.L., 2012. Sensibilità di isolati di Monilinia laxa e Monilia fructicola a fungicidi impiegati in pre-raccolta su drupacee. Protezione delle colture 5: 37.
- Campia P., Venturini G., Moreno-Sanz P., Casati P., Toffolatti S.L., 2017. Genetic structure and fungicide sensitivity of Botrytis cinerea populations isolated from grapevine in northern Italy. Plant Pathology 66: 890–899. https://doi.org/10.1111/ppa.12643 DOI: https://doi.org/10.1111/ppa.12643
- Chen F., Liu X., Chen S., Schnabel E., Schnabel G., 2013. Characterization of Monilinia fructicola Strains Resistant to Both Propiconazole and Boscalid. Plant Disease 97: 645–651. https://doi.org/10.1094/PDIS-10-12-0924-RE DOI: https://doi.org/10.1094/PDIS-10-12-0924-RE
- Egüen B., Melgarejo P., De Cal A., 2015. Sensitivity of Monilinia fructicola from Spanish peach orchards to thiophanate-methyl, iprodione, and cyproconazole: fitness analysis and competitiveness. European Journal of Plant Pathology 141: 789–801. https://doi.org/10.1007/s10658-014-0579-2 DOI: https://doi.org/10.1007/s10658-014-0579-2
- EPPO A1 and A2 lists of pests recommended for regulation as quarantine pests, European and Mediterranean Plant Protection Organization 21 Boulevard Richard Lenoir, 75011 Paris, France September 2019
- Fazekas M., Madar A., Sipiczki M., Miklós I., Holb I.J., 2014. Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary. World Journal of Microbiology and Biotechnology 30: 1879–1892. https://doi.org/10.1007/s11274-014-1613-4 DOI: https://doi.org/10.1007/s11274-014-1613-4
- Förster H., Driever G.F., Thompson D.C., Adaskaveg J.E., 2007. Postharvest Decay Management for Stone Fruit Crops in California Using the “Reduced-Risk” Fungicides Fludioxonil and Fenhexamid. Plant Disease 91: 209–215. https://doi.org/10.1094/PDIS-91-2-0209 DOI: https://doi.org/10.1094/PDIS-91-2-0209
- FRAC, 2020. List of first confirmed cases of plant pathogenic organisms resistant to disease control agents https://wwwfracinfo/ Accessed 08 July 2022.
- FRAC, 2022. Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action (Including FRAC Code Numbering) https://wwwfracinfo/ Accessed 08 July 2022.
- Grasso V., Palermo S., Sierotzki H., Garibaldi A., Gisi U., 2006. Cytochromeb gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. Pest Management Science 62: 465–472. https://doi.org/10.1002/ps.1236 DOI: https://doi.org/10.1002/ps.1236
- Holb I.J., 2008. Brown rot blossom blight of pome and stone fruits: symptom, disease cycle, host resistance, and biological control. International Journal of Horticultural Science 14. https://doi.org/10.31421/IJHS/14/3/796 DOI: https://doi.org/10.31421/IJHS/14/3/796
- Holb I.J., Schnabel G., 2007. Differential effect of triazoles on mycelial growth and disease measurements of Monilinia fructicola isolates with reduced sensitivity to DMI fungicides. Crop Protection 26: 753–759. https://doi.org/10.1016/j.cropro.2006.07.001 DOI: https://doi.org/10.1016/j.cropro.2006.07.001
- Hrustić J., Mihajlović M., Grahovac M., Delibašić G., Tanović B., 2018. Fungicide sensitivity, growth rate, aggressiveness and frost hardiness of Monilinia fructicola and Monilinia laxa isolates. European Journal of Plant Pathology 151: 389–400. https://doi.org/10.1007/s10658-017-1380-9 DOI: https://doi.org/10.1007/s10658-017-1380-9
- Katoh K., Standley D.M., 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010 DOI: https://doi.org/10.1093/molbev/mst010
- Kumar S., Stecher G., Tamura K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054 DOI: https://doi.org/10.1093/molbev/msw054
- Landi L., Feliziani E., Romanazzi G., 2016. Surveys for Monilinia spp. on stone fruit in central-eastern Italy. Acta Horticulturae 225–230. https://doi.org/10.17660/ActaHortic.2016.1144.33 DOI: https://doi.org/10.17660/ActaHortic.2016.1144.33
- Lichtemberg P.S.F., Zeviani W.M., Michailides T.J., May de Mio L.L., 2016. Comparison of the sensitivity of Monilinia fructicola isolates to tebuconazole in Brazil using three methods. Canadian Journal of Plant Pathology 38: 55–63. https://doi.org/10.1080/07060661.2016.1147496 DOI: https://doi.org/10.1080/07060661.2016.1147496
- Luo C.-X., Hu M.-J., Jin X., Yin L.-F., Bryson P.K., Schnabel G., 2010. An intron in the cytochrome b gene of Monilinia fructicola mitigates the risk of resistance development to QoI fungicides. Pest Management Science 66: 1308–1315. https://doi.org/10.1002/ps.2016 DOI: https://doi.org/10.1002/ps.2016
- Luo C.-X., Schnabel G., 2008. Adaptation to Fungicides in Monilinia fructicola Isolates with Different Fungicide Resistance Phenotypes. Phytopathology 98: 230–238. https://doi.org/10.1094/PHYTO-98-2-0230 DOI: https://doi.org/10.1094/PHYTO-98-2-0230
- Malandrakis A., Koukiasas N., Veloukas T., Karaoglanidis G., Markoglou A., 2013. Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants. Crop Protection 46: 13–17. https://doi.org/10.1016/j.cropro.2012.12.009 DOI: https://doi.org/10.1016/j.cropro.2012.12.009
- Mancini V., Makau S., Landi L., Romanazzi G., 2021. Identification of Monilinia spp. from stone fruits in the Marche region of Italy. Acta Horticulturae 91–96. https://doi.org/10.17660/ActaHortic.2021.1325.15 DOI: https://doi.org/10.17660/ActaHortic.2021.1325.15
- Martinelli E., Vitale S., Valente M., Riccioni L., 2013. Segnalate in Lazio infezioni di Monilinia fructicola su drupacee. Informatore Agrario 2: 55–57.
- Martini C., Lantos A., Di Francesco A., Guidarelli M., D’Aquino S., Baraldi E., 2014. First Report of Asiatic Brown Rot Caused by Monilinia polystroma on Peach in Italy. Plant Disease 98: 1585–1585. https://doi.org/10.1094/PDIS-05-14-0551-PDN DOI: https://doi.org/10.1094/PDIS-05-14-0551-PDN
- Martini C., Guidarelli M., Di Francesco A., Ceredi G., Mari M., 2016. Characterization of thiophanate methyl resistance in italian Monilinia fructicola isolates. Journal of Plant Pathology 98. https://doi.org/10.4454/JPP.V98I3.003
- May-De Mio L.L., Luo Y., Michailides T.J., 2011. Sensitivity of Monilinia fructicola from Brazil to Tebuconazole, Azoxystrobin, and Thiophanate-Methyl and Implications for Disease Management. Plant Disease 95: 821–827. https://doi.org/10.1094/PDIS-07-10-0511 DOI: https://doi.org/10.1094/PDIS-07-10-0511
- Miessner S., Stammler G., 2010. Monilinia laxa, M. fructigena and M. fructicola: Risk estimation of resistance to QoI fungicides and identification of species with cytochrome b gene sequences Journal of Plant Diseases and Protection: 162–167. DOI: https://doi.org/10.1007/BF03356354
- Montuschi C., Baschieri T., Rimondi S., Rossi R., Antoniacci L., Bugiani R., 2016. Monilinia fructicola in Emilia-Romagna: Indagini condotte sul territorio regionale dal 2010 al 2015. ATTI Giornate Fitopatologiche 2: 395–402.
- Mustafa M.H., Bassi D., Corre M.-N., Lino L.O., Signoret V., … Cirilli M., 2021. Phenotyping Brown Rot Susceptibility in Stone Fruit: A Literature Review with Emphasis on Peach. Horticulturae 7: 115. https://doi.org/10.3390/horticulturae7050115 DOI: https://doi.org/10.3390/horticulturae7050115
- Myresiotis C.K., Karaoglanidis G.S., Tzavella-Klonari K., 2007. Resistance of Botrytis cinerea Isolates from Vegetable Crops to Anilinopyrimidine, Phenylpyrrole, Hydroxyanilide, Benzimidazole, and Dicarboximide Fungicides. Plant Disease 91: 407–413. https://doi.org/10.1094/PDIS-91-4-0407 DOI: https://doi.org/10.1094/PDIS-91-4-0407
- Papavasileiou A., Testempasis S., Michailides T.J., Karaoglanidis G.S., 2015. Frequency of brown rot fungi on blossoms and fruit in stone fruit orchards in Greece. Plant Pathology 64: 416–424. https://doi.org/10.1111/ppa.12264 DOI: https://doi.org/10.1111/ppa.12264
- Pellegrino C., Gullino M.L., Garibaldi A., Spadaro D., 2009. First Report of Brown Rot of Stone Fruit Caused by Monilinia fructicola in Italy. Plant Disease 93: 668–668. https://doi.org/10.1094/PDIS-93-6-0668A DOI: https://doi.org/10.1094/PDIS-93-6-0668A
- Pereira W.V., Primiano I.V., Morales R.G.F., Peres N.A., Amorim L., May De Mio L.L., 2017. Reduced Sensitivity to Azoxystrobin of Monilinia fructicola Isolates From Brazilian Stone Fruits is Not Associated With Previously Described Mutations in the Cytochrome b Gene. Plant Disease 101: 766–773. https://doi.org/10.1094/PDIS-09-16-1247-RE DOI: https://doi.org/10.1094/PDIS-09-16-1247-RE
- Pereira W.V., Morales R.G.F., Bauer A.I.G., Kudlawiec K., May‐De‐Mio L.L., 2020. Discontinuance of tebuconazole in the field restores sensitivity of Monilinia fructicola in stone fruit orchards. Plant Pathology 69: 68–76. https://doi.org/10.1111/ppa.13101 DOI: https://doi.org/10.1111/ppa.13101
- Pratella G.C., 1996. La fase post-raccolta: la screpolatura delle ciliegie. Frutticoltura 10: 71–74.
- Schnabel G., Bryson P.K., Bridges W.C., Brannen P.M., 2004. Reduced Sensitivity in Monilinia fructicola to Propiconazole in Georgia and Implications for Disease Management. Plant Disease 88: 1000–1004. https://doi.org/10.1094/PDIS.2004.88.9.1000 DOI: https://doi.org/10.1094/PDIS.2004.88.9.1000
- Swofford D.L., 2003. PAUP*. Phylogenetic analysis using parsimony (*and other methods) v. 4.0b10. Sunder- land; MS, USA: Sinauer Associates.
- Villarino M., Egüen B., Lamarca N., Segarra J., Usall J., … De Cal A., 2013. Occurrence of Monilinia laxa and M. fructigena after introduction of M. fructicola in peach orchards in Spain. European Journal of Plant Pathology 137: 835–845. https://doi.org/10.1007/s10658-013-0292-6 DOI: https://doi.org/10.1007/s10658-013-0292-6
- White T.J., Bruns T.D., Lee S.B., Taylor J.W., 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. pp. 315–322 In: PCR Protocols: A Guide to Methods and Applications, (Innis, M. A., D. H. Gelfand, J. J. Sninsky, T. J. White, ed.). Academic Press, Inc., New York. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Xie J., Singh-Babak S., Cowen L., 2012. Minimum Inhibitory Concentration (MIC) Assay for Antifungal Drugs. BIO-PROTOCOL 2. https://doi.org/10.21769/BioProtoc.252 DOI: https://doi.org/10.21769/BioProtoc.252