Vol. 62 No. 3 (2023)
Articles

Identification of pathogens causing brown rot of stone fruit in Cuneo province (Italy) and assessment of sensitivity to azoxystrobin, cyprodinil, fenhexamid, fludioxonil, and tebuconazole

Greta DARDANI
Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco (TO)
Vladimiro GUARNACCIA
Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco (TO)
Luca NARI
AGRION, The Foundation for Research, Innovation and Technological Development of Piedmont Agriculture, 12030 Manta
Stefanos I. TESTEMPASIS
Laboratory of Plant Pathology, Aristotle University of Thessaloniki, P.O. Box 269, 54124, Thessaloniki
George S. KARAOGLANIDIS
Laboratory of Plant Pathology, Aristotle University of Thessaloniki, P.O. Box 269, 54124, Thessaloniki
M. Lodovica GULLINO
Interdipartimental Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO)

Published 2023-12-30

Keywords

  • Fungal characterization,
  • Chemical control,
  • Monilinia

How to Cite

[1]
G. DARDANI, V. GUARNACCIA, L. NARI, S. I. TESTEMPASIS, G. S. KARAOGLANIDIS, and M. L. GULLINO, “Identification of pathogens causing brown rot of stone fruit in Cuneo province (Italy) and assessment of sensitivity to azoxystrobin, cyprodinil, fenhexamid, fludioxonil, and tebuconazole”, Phytopathol. Mediterr., vol. 62, no. 3, pp. 455–465, Dec. 2023.

Abstract

Monilinia spp. cause brown rot and blossom blight of stone fruit. This study characterized the diversity of Monilinia spp. associated with stone fruit rots in the Cuneo province, the major fruit production area in Piedmont, and assessed their sensitivity to azoxystrobin, cyprodinil, fenhexamid, fludioxonil and tebuconazole. Species diversity was determined by PCR amplification and sequencing of isolate internal transcribed spacer (ITS) regions. Sensitivity to fungicides was determined by measuring in vitro mycelium growth on fungicide-amended media. Fifty isolates were obtained from apricot, cherry, or peach fruits with typical brown rot symptoms. Thirteen isolates were identified as M. fructicola, and 37 as M. laxa. Nine isolates of Monilinia laxa and two of M. fructicola had resistance factor (RF) values greater than 10 for different fungicides. The greatest (RF) value (48.96) was measured for azoxystrobin against the M. fructicola isolate CVG 1514. Among the M. laxa isolates, isolate CVG 1547 had the greatest RF value to cyprodinil, while isolate CVG 1709 had RF values greater than 10 for cyprodinil and tebuconazole. A systematic and wider sampling should be carried out in the Piedmont region to determine the distribution of fungicide resistant Monilinia spp. in stone fruit crops. The use of site-specific fungicides remains the most effective strategy for control brown rot, and continued monitoring for fungicide resistance within Monilinia spp. populations is recommended.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Abate D., Pastore C., Gerin D., De Miccolis Angelini R.M., Rotolo C., … Faretra F., 2018. Characterization of Monilinia spp. Populations on Stone Fruit in South Italy. Plant Disease 102: 1708–1717. https://doi.org/10.1094/PDIS-08-17-1314-RE DOI: https://doi.org/10.1094/PDIS-08-17-1314-RE
  2. Amiri A., Brannen P.M., Schnabel G., 2010. Reduced Sensitivity in Monilinia fructicola Field Isolates from South Carolina and Georgia to Respiration Inhibitor Fungicides. Plant Disease 94: 737–743. https://doi.org/10.1094/PDIS-94-6-0737 DOI: https://doi.org/10.1094/PDIS-94-6-0737
  3. Boehm E.W.A., Ma Z., Michailides T.J., 2001. Species-Specific Detection of Monilinia fructicola from California Stone Fruits and Flowers. Phytopathology 91: 428–439. https://doi.org/10.1094/PHYTO.2001.91.5.428 DOI: https://doi.org/10.1094/PHYTO.2001.91.5.428
  4. Bustos Lòpez M., Spadaro D., Garibaldi A., Gullino M.L., 2012. Sensibilità di isolati di Monilinia laxa e Monilia fructicola a fungicidi impiegati in pre-raccolta su drupacee. Protezione delle colture 5: 37.
  5. Campia P., Venturini G., Moreno-Sanz P., Casati P., Toffolatti S.L., 2017. Genetic structure and fungicide sensitivity of Botrytis cinerea populations isolated from grapevine in northern Italy. Plant Pathology 66: 890–899. https://doi.org/10.1111/ppa.12643 DOI: https://doi.org/10.1111/ppa.12643
  6. Chen F., Liu X., Chen S., Schnabel E., Schnabel G., 2013. Characterization of Monilinia fructicola Strains Resistant to Both Propiconazole and Boscalid. Plant Disease 97: 645–651. https://doi.org/10.1094/PDIS-10-12-0924-RE DOI: https://doi.org/10.1094/PDIS-10-12-0924-RE
  7. Egüen B., Melgarejo P., De Cal A., 2015. Sensitivity of Monilinia fructicola from Spanish peach orchards to thiophanate-methyl, iprodione, and cyproconazole: fitness analysis and competitiveness. European Journal of Plant Pathology 141: 789–801. https://doi.org/10.1007/s10658-014-0579-2 DOI: https://doi.org/10.1007/s10658-014-0579-2
  8. EPPO A1 and A2 lists of pests recommended for regulation as quarantine pests, European and Mediterranean Plant Protection Organization 21 Boulevard Richard Lenoir, 75011 Paris, France September 2019
  9. Fazekas M., Madar A., Sipiczki M., Miklós I., Holb I.J., 2014. Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary. World Journal of Microbiology and Biotechnology 30: 1879–1892. https://doi.org/10.1007/s11274-014-1613-4 DOI: https://doi.org/10.1007/s11274-014-1613-4
  10. Förster H., Driever G.F., Thompson D.C., Adaskaveg J.E., 2007. Postharvest Decay Management for Stone Fruit Crops in California Using the “Reduced-Risk” Fungicides Fludioxonil and Fenhexamid. Plant Disease 91: 209–215. https://doi.org/10.1094/PDIS-91-2-0209 DOI: https://doi.org/10.1094/PDIS-91-2-0209
  11. FRAC, 2020. List of first confirmed cases of plant pathogenic organisms resistant to disease control agents https://wwwfracinfo/ Accessed 08 July 2022.
  12. FRAC, 2022. Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action (Including FRAC Code Numbering) https://wwwfracinfo/ Accessed 08 July 2022.
  13. Grasso V., Palermo S., Sierotzki H., Garibaldi A., Gisi U., 2006. Cytochromeb gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens. Pest Management Science 62: 465–472. https://doi.org/10.1002/ps.1236 DOI: https://doi.org/10.1002/ps.1236
  14. Holb I.J., 2008. Brown rot blossom blight of pome and stone fruits: symptom, disease cycle, host resistance, and biological control. International Journal of Horticultural Science 14. https://doi.org/10.31421/IJHS/14/3/796 DOI: https://doi.org/10.31421/IJHS/14/3/796
  15. Holb I.J., Schnabel G., 2007. Differential effect of triazoles on mycelial growth and disease measurements of Monilinia fructicola isolates with reduced sensitivity to DMI fungicides. Crop Protection 26: 753–759. https://doi.org/10.1016/j.cropro.2006.07.001 DOI: https://doi.org/10.1016/j.cropro.2006.07.001
  16. Hrustić J., Mihajlović M., Grahovac M., Delibašić G., Tanović B., 2018. Fungicide sensitivity, growth rate, aggressiveness and frost hardiness of Monilinia fructicola and Monilinia laxa isolates. European Journal of Plant Pathology 151: 389–400. https://doi.org/10.1007/s10658-017-1380-9 DOI: https://doi.org/10.1007/s10658-017-1380-9
  17. Katoh K., Standley D.M., 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010 DOI: https://doi.org/10.1093/molbev/mst010
  18. Kumar S., Stecher G., Tamura K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054 DOI: https://doi.org/10.1093/molbev/msw054
  19. Landi L., Feliziani E., Romanazzi G., 2016. Surveys for Monilinia spp. on stone fruit in central-eastern Italy. Acta Horticulturae 225–230. https://doi.org/10.17660/ActaHortic.2016.1144.33 DOI: https://doi.org/10.17660/ActaHortic.2016.1144.33
  20. Lichtemberg P.S.F., Zeviani W.M., Michailides T.J., May de Mio L.L., 2016. Comparison of the sensitivity of Monilinia fructicola isolates to tebuconazole in Brazil using three methods. Canadian Journal of Plant Pathology 38: 55–63. https://doi.org/10.1080/07060661.2016.1147496 DOI: https://doi.org/10.1080/07060661.2016.1147496
  21. Luo C.-X., Hu M.-J., Jin X., Yin L.-F., Bryson P.K., Schnabel G., 2010. An intron in the cytochrome b gene of Monilinia fructicola mitigates the risk of resistance development to QoI fungicides. Pest Management Science 66: 1308–1315. https://doi.org/10.1002/ps.2016 DOI: https://doi.org/10.1002/ps.2016
  22. Luo C.-X., Schnabel G., 2008. Adaptation to Fungicides in Monilinia fructicola Isolates with Different Fungicide Resistance Phenotypes. Phytopathology 98: 230–238. https://doi.org/10.1094/PHYTO-98-2-0230 DOI: https://doi.org/10.1094/PHYTO-98-2-0230
  23. Malandrakis A., Koukiasas N., Veloukas T., Karaoglanidis G., Markoglou A., 2013. Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants. Crop Protection 46: 13–17. https://doi.org/10.1016/j.cropro.2012.12.009 DOI: https://doi.org/10.1016/j.cropro.2012.12.009
  24. Mancini V., Makau S., Landi L., Romanazzi G., 2021. Identification of Monilinia spp. from stone fruits in the Marche region of Italy. Acta Horticulturae 91–96. https://doi.org/10.17660/ActaHortic.2021.1325.15 DOI: https://doi.org/10.17660/ActaHortic.2021.1325.15
  25. Martinelli E., Vitale S., Valente M., Riccioni L., 2013. Segnalate in Lazio infezioni di Monilinia fructicola su drupacee. Informatore Agrario 2: 55–57.
  26. Martini C., Lantos A., Di Francesco A., Guidarelli M., D’Aquino S., Baraldi E., 2014. First Report of Asiatic Brown Rot Caused by Monilinia polystroma on Peach in Italy. Plant Disease 98: 1585–1585. https://doi.org/10.1094/PDIS-05-14-0551-PDN DOI: https://doi.org/10.1094/PDIS-05-14-0551-PDN
  27. Martini C., Guidarelli M., Di Francesco A., Ceredi G., Mari M., 2016. Characterization of thiophanate methyl resistance in italian Monilinia fructicola isolates. Journal of Plant Pathology 98. https://doi.org/10.4454/JPP.V98I3.003
  28. May-De Mio L.L., Luo Y., Michailides T.J., 2011. Sensitivity of Monilinia fructicola from Brazil to Tebuconazole, Azoxystrobin, and Thiophanate-Methyl and Implications for Disease Management. Plant Disease 95: 821–827. https://doi.org/10.1094/PDIS-07-10-0511 DOI: https://doi.org/10.1094/PDIS-07-10-0511
  29. Miessner S., Stammler G., 2010. Monilinia laxa, M. fructigena and M. fructicola: Risk estimation of resistance to QoI fungicides and identification of species with cytochrome b gene sequences Journal of Plant Diseases and Protection: 162–167. DOI: https://doi.org/10.1007/BF03356354
  30. Montuschi C., Baschieri T., Rimondi S., Rossi R., Antoniacci L., Bugiani R., 2016. Monilinia fructicola in Emilia-Romagna: Indagini condotte sul territorio regionale dal 2010 al 2015. ATTI Giornate Fitopatologiche 2: 395–402.
  31. Mustafa M.H., Bassi D., Corre M.-N., Lino L.O., Signoret V., … Cirilli M., 2021. Phenotyping Brown Rot Susceptibility in Stone Fruit: A Literature Review with Emphasis on Peach. Horticulturae 7: 115. https://doi.org/10.3390/horticulturae7050115 DOI: https://doi.org/10.3390/horticulturae7050115
  32. Myresiotis C.K., Karaoglanidis G.S., Tzavella-Klonari K., 2007. Resistance of Botrytis cinerea Isolates from Vegetable Crops to Anilinopyrimidine, Phenylpyrrole, Hydroxyanilide, Benzimidazole, and Dicarboximide Fungicides. Plant Disease 91: 407–413. https://doi.org/10.1094/PDIS-91-4-0407 DOI: https://doi.org/10.1094/PDIS-91-4-0407
  33. Papavasileiou A., Testempasis S., Michailides T.J., Karaoglanidis G.S., 2015. Frequency of brown rot fungi on blossoms and fruit in stone fruit orchards in Greece. Plant Pathology 64: 416–424. https://doi.org/10.1111/ppa.12264 DOI: https://doi.org/10.1111/ppa.12264
  34. Pellegrino C., Gullino M.L., Garibaldi A., Spadaro D., 2009. First Report of Brown Rot of Stone Fruit Caused by Monilinia fructicola in Italy. Plant Disease 93: 668–668. https://doi.org/10.1094/PDIS-93-6-0668A DOI: https://doi.org/10.1094/PDIS-93-6-0668A
  35. Pereira W.V., Primiano I.V., Morales R.G.F., Peres N.A., Amorim L., May De Mio L.L., 2017. Reduced Sensitivity to Azoxystrobin of Monilinia fructicola Isolates From Brazilian Stone Fruits is Not Associated With Previously Described Mutations in the Cytochrome b Gene. Plant Disease 101: 766–773. https://doi.org/10.1094/PDIS-09-16-1247-RE DOI: https://doi.org/10.1094/PDIS-09-16-1247-RE
  36. Pereira W.V., Morales R.G.F., Bauer A.I.G., Kudlawiec K., May‐De‐Mio L.L., 2020. Discontinuance of tebuconazole in the field restores sensitivity of Monilinia fructicola in stone fruit orchards. Plant Pathology 69: 68–76. https://doi.org/10.1111/ppa.13101 DOI: https://doi.org/10.1111/ppa.13101
  37. Pratella G.C., 1996. La fase post-raccolta: la screpolatura delle ciliegie. Frutticoltura 10: 71–74.
  38. Schnabel G., Bryson P.K., Bridges W.C., Brannen P.M., 2004. Reduced Sensitivity in Monilinia fructicola to Propiconazole in Georgia and Implications for Disease Management. Plant Disease 88: 1000–1004. https://doi.org/10.1094/PDIS.2004.88.9.1000 DOI: https://doi.org/10.1094/PDIS.2004.88.9.1000
  39. Swofford D.L., 2003. PAUP*. Phylogenetic analysis using parsimony (*and other methods) v. 4.0b10. Sunder- land; MS, USA: Sinauer Associates.
  40. Villarino M., Egüen B., Lamarca N., Segarra J., Usall J., … De Cal A., 2013. Occurrence of Monilinia laxa and M. fructigena after introduction of M. fructicola in peach orchards in Spain. European Journal of Plant Pathology 137: 835–845. https://doi.org/10.1007/s10658-013-0292-6 DOI: https://doi.org/10.1007/s10658-013-0292-6
  41. White T.J., Bruns T.D., Lee S.B., Taylor J.W., 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. pp. 315–322 In: PCR Protocols: A Guide to Methods and Applications, (Innis, M. A., D. H. Gelfand, J. J. Sninsky, T. J. White, ed.). Academic Press, Inc., New York. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  42. Xie J., Singh-Babak S., Cowen L., 2012. Minimum Inhibitory Concentration (MIC) Assay for Antifungal Drugs. BIO-PROTOCOL 2. https://doi.org/10.21769/BioProtoc.252 DOI: https://doi.org/10.21769/BioProtoc.252