Optimisation of sampling and testing for asymptomatic olive trees infected by Xylella fastidiosa in Apulia region, Italy
Published 2022-11-25
Keywords
- Plant matrices,
- diagnosis,
- qPCR,
- real-time LAMP,
- DAS-ELISA
- DTBIA ...More
How to Cite
Abstract
Early detection of Xylella fastidiosa outbreaks in Apulian olive groves is crucial, especially in buffer zones and pathogen-free areas where olive trees are asymptomatic. Three studies were conducted. Two were on the spatial and temporal progression of X. fastidiosa infections in tree canopies of asymptomatic or mildly symptomatic olive trees of tolerant (‘Leccino’) and susceptible (‘Cellina di Nardò’ and ‘Ogliarola salentina’) cultivars. Despite different trends in pathogen infection rates and concentrations between ‘Leccino’ and susceptible olive cultivars over the study period, results showed that sampling was most effective in the mid-upper part of tree canopies throughout the year, excluding the warmest and coldest periods. Stem xylem tissues were the most appropriate for detecting the pathogen compared to lower parts of mature leaves with petioles, using serological and molecular assays. Based on these results, a third study was conducted to compare molecular and serological tests (qPCR, real-time LAMP, DAS-ELISA, DTBIA) for detection of X. fastidiosa in the mid-upper part of asymptomatic branches of infected ‘Leccino’ trees that were sampled in an appropriate collection time, using stem xylem tissue as the most appropriate matrix for testing. The molecular methods showed the greatest sensitivity, with no undetermined results, while among the serological assays, DTBIA was more sensitive than DAS-ELISA. An improved protocol for monitoring asymptomatic olive trees is recommended.
Downloads
Metrics
References
Boscia D., Altamura G., Ciniero A., Di Carolo M., Dongiovanni C., ... Martelli G.P., 2017. Resistenza a Xylella fastidiosa in diverse cultivar di olivo. L’informatore Agrario 11: 59-63.
Cavalieri V., Altamura G., Fumarola G., di Carolo M., Saponari M., ... Dongiovanni C., 2019. Transmission of Xylella fastidiosa subspecies pauca sequence type 53 by different insect species. Insects 10: 324. https://doi.org/10.3390/insects10100324
De Pascali M., Vergine M., Sabella E., Aprile A., Nutricati E., Nicolì, F., ... Luvisi A., 2019. Molecular effects of Xylella fastidiosa and drought combined stress in olive trees. Plants 8, 437. https://doi.org/10.3390/plants8110437
Djelouah K., Frasheri D., Valentini F., D’Onghia A.M., Digiaro M., 2014. Direct tissue blot immunoassay for detection of Xylella fastidiosa in olive trees. Phytopathologia Mediterranea 53: 559–564.http://dx.doi.org/10.14601/Phytopathol_Mediterr-14603
Elbeaino T., Valentini F., Abou Kubaa R., Moubarak P., Yaseen T., Digiaro M., 2014. Multilocus sequence typing of Xylella fastidiosa isolated from olive affected by "olive quick decline syndrome" in Italy. Phytopathologia Mediterranea 53: 533-542.
European Food Safety Authority (EFSA), Delbianco A., Gibin D., Pasinato L., Morelli M., 2022. Update of the Xylella spp. host plant database–systematic literature search up to 30 June 2021. EFSA Journal 20, e07039. https://doi.org/10.2903/j.efsa.2022.7039
EPPO, 2019. PM 7/24 (4): Xylella fastidiosa. OEPP/EPPO Bulletin 49: 175–227.
Giampetruzzi A., Morelli M., Saponari M., Loconsole G., Chiumenti M., ... Saldarelli P., 2016. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca. BMC Genomics 17: 475. https://doi.org/10.1186/s12864-016-2833-9
Harper S.J., Ward L.I., Clover G.R.G., 2010. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 100: 1282–1288 (erratum 2013).https://doi.org/10.1094/PHYTO-06-10-0168
Hopkins D.L., 1981. Seasonal concentration of the Pierce’s disease bacterium in grapevine stems, petioles, and leaf veins. Phytopathology 71: 415–418.
Janse J.D., Obradovic A., 2010. Xylella fastidiosa: its biology, diagnosis, control and risks. Journal of Plant Pathology 92: S35-S48.https://www.jstor.org/stable/41998754
Loconsole G., Potere O., Boscia D., Altamura G., Djelouah K., ... Saponari M., 2014. Detection of Xylella fastidiosa in olive trees by molecular and serological methods. Journal of Plant Pathology 96: 7–14. http://dx.doi.org/10.4454/JPP.V96I1.041
Martelli G.P., Boscia D., Porcelli F., Saponari M., 2016. The olive quick decline syndrome in south-east Italy: a threatening phytosanitary emergency. European Journal of Plant Pathology 144: 235–243. https://doi.org/10.1007/s10658-015-0784-7
Morelli M., García-Madero J.M., Jos Á., Saldarelli P., Dongiovanni C., … Compant S., 2021. Xylella fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 9:1771. https://doi.org/10.3390/microorganisms9081771
Nunney L., Ortiz B., Russell S.A., Ruiz Sánchez R., Stouthamer R., 2014. The Complex Biogeography of the Plant Pathogen Xylella fastidiosa: Genetic Evidence of Introductions and Subspecific Introgression in Central America. PLOS ONE 9: e112463. https://doi.org/10.1371/journal.pone.0112463
Randall J.J., Goldberg N.P., Kemp J.D., Radionenko M., French J.M., … Hanson S.F., 2009. Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States. Applied and environmental microbiology 75: 5631-5638. https://doi.org/10.1128/AEM.00609-09
Román-Écija M., Landa B.B., Testi L., Navas-Cortés J.A., 2022. Modelling temperature response of Xylella fastidiosa strains, and xylem vessel temperature in woody plants. In Abstracts of invited, oral and poster papers of the 16th Congress of the Mediterranean Phytopathological Union, April 4–8, 2022, Limassol, Cyprus (Laura Mugnai ed.), Phytopathologia Mediterranea 61: 194.
Santoro F., Gualano S., Favia G., D’Onghia A.M., 2017. IT platform based on smart device and web-application for the survey of Xylella fastidiosa. In: Xylella fastidiosa & the Olive Quick Decline Syndrome (OQDS): a serious worldwide challenge for the safeguard of olive trees (A.M. D'Onghia, S. Brunel, F. Valentini, ed.), CIHEAM publications, Options Mèditerranéennes, A/121: 47-48.
Saponari M., Boscia D., Nigro F., Martelli G.P., 2013. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). Journal of Plant Pathology 95: 668.
Schaad N. W., Postnikova E., Lacy G., Chang C. J., 2004. Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Systematic and applied microbiology 27: 290-300. https://doi.org/10.1078/0723-2020-00263
Schneider K., Van der Werf W., Cendoya M., Mourits M., Navas-Cortés J.A., … Oude Lansink A., 2020. Impact of Xylella fastidiosa subspecies pauca in European olives. In Proceedings of the National Academy of Sciences 117: 9250–9259. https://doi.org/10.1073/pnas.191220611
Strona G., Carstens C.J., Beck P.S.A., 2017. Network analysis reveals why Xylella fastidiosa will persist in Europe. Scientific Reports 7: 71. https://doi.org/10.1038/s41598-017-00077-z
Wells J. M., Raju B.C.,Hung H.-Y., Weisburg W.G., Mandelco-Paul L., Brenner D. J., 1987. Xylella fastidiosa gen. nov., sp. nov: Gram-Negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp.. International Journal of Systematic and Evolutionary Microbiology 37: 136-143. https://doi.org/10.1099/00207713-37-2-136
Yaseen T., Drago S., Valentini F., Elbeaino T., Stampone G., … D’Onghia A.M., 2015. On-site detection of Xylella fastidiosa in host plants and in “spy insects” using the real-time loop-mediated isothermal amplification method. Phytopathologia Mediterranea 54: 488–496. https://doi.org/10.14601/Phytopathol_Mediterr-15250.