Vol. 60 No. 1 (2021)

Characterization of Xanthomonas campestris pv. campestris in Algeria

ENSA, Ecole Nationale Supérieure d’Agronomie, 1 Avenue Pasteur, Hassan Badi - 16000 El Harrach - Alger, Algeria
INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, Rue Georges Morel 42, 49071 Beaucouzé, France
Diag-Gene, 8 rue Lenôtre, 49066, Angers, France
CIHEAM - Istituto Agronomico Mediterraneo di Bari, Via Ceglie, 9, I-70010, Valenzano (BA), Italy
ENSA, Ecole Nationale Supérieure d’Agronomie, 1 Avenue Pasteur, Hassan Badi - 16000 El Harrach - Alger, Algeria
Marie-Agnès JACQUES
INRA, UMR1345 Institut de Recherche en Horticulture et Semences, Beaucouzé, Rue Georges Morel 42, 49071 Beaucouzé, France
ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du travail. Laboratoire de la santé des végétaux, 7 rue Dixméras, 49044 Angers, France
Published May 13, 2021
  • Brassicaceae,
  • seed-borne bacterium,
  • genetic diversity,
  • multilocus sequence analysis
How to Cite
S. LAALA, “Characterization of Xanthomonas campestris pv. campestris in Algeria”, Phytopathol. Mediterr., vol. 60, no. 1, pp. 51-62, May 2021.


Xanthomonas campestris pv. campestris (Xcc) causes the black rot of cruciferous plants. This seed-borne bacterium is considered as the most destructive disease to cruciferous crops. Although sources of contamination are various, seeds are the main source of transmission. Typical symptoms of black rot were first observed in 2011 on cabbage and cauliflower fields in the main production areas of Algeria. Leaf samples displaying typical symptoms were collected during 2011 to 2014, and 170 strains were isolated from 45 commercial fields. Xcc isolates were very homogeneous in morphological, physiological and biochemical characteristics similar to reference strains, and gave positive pathogenicity and molecular test results (multiplex PCR with specific primers). This is the first record of Xcc in Algeria. Genetic diversity within the isolates was assessed in comparison with strains isolated elsewhere. A multilocus sequence analysis based on two housekeeping genes (gyrB and rpoD) was carried out on 77 strains representative isolates. The isolates grouped into 20 haplotypes defined with 68 polymorphic sites. The phylogenetic tree obtained showed that Xcc is in two groups, and all Algerian strains clustered in group 1 in three subgroups. No relationships were detected between haplotypes and the origins of the seed lots, the varieties of host cabbage, the years of isolation and agroclimatic regions.


Download data is not yet available.


Metrics Loading ...


Achtman M, 2008. Evolution population structure and phylogeography of genetically monomorphic bacterial pathogens. Annual Review of Microbiology 62, 53–70. 353 https://doi.org/10.1146/annurev.micro.62.081307.162832 354
Altschul, S., W. Gish., W. Miller., E. Myers and D. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2 356
Alvarez A.M. and J.J. Cho, 1978. Black rot of cabbage in Hawaii: Inoculum source and disease 357 incidence. Phytopathology 68, 1456-1459. https://doi.org/10.1094/Phyto-68-1456
Alvarez, A. M., and K. Lou, 1985. Rapid identification of Xanthomonas campestris pv. campestris by ELISA. Plant Disease 69, 1082-1086. https://doi.org/10.1094/PD-69-1082
Bella P., Moretti C, Licciardello G and al, 2019. Multilocus sequence typing analysis of Italian Xanthomonas campestris pv. campestris strains suggests the evolution of local endemic populations of the pathogen and does not correlate with race distribution. Plant Pathology 68, 278–87. https://doi.org/10.1111/ppa.12946
Berg, T., L. Tesoriero and D.L. Hailstones, 2005. PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathology 54, 416-427. https://doi.org/10.1111/j.1365-3059.2005.01186.x
Blackeman, J. P, 1991. Foliar bacterial pathogens: epiphytic growth and interactions on leaves. Journal of applied bacteriology, Symposium Supplement, 70,49S-59S
Bui Thi Ngoc, L., C. Verniere., K. Vital., F. Guerin., L. Gagnevin., S. Brisse., N. Ah-You., and O. Pruvost, 2009. Development of 14 minisatellites markers for the citrus canker bacterium, Xanthomonas citri pv. citri. Molecular Ecology resourse 9, 125-127. https://doi.org/10.1111/j.1755-0998.2008.02242.x
Chun W.W.C. and A.M. Alvarez, 1983. A starch-methionine medium for isolation of Xanthomonas campestris pv. campestris from plant debris in soil. Plant Disease 67, 632–635. https://doi.org/10.1094/PD-67-632
Cook, A. A., Larson, Rh and J.C. Walker, 1952. Relation of the black rot pathone to cabbage seed. Phytopathology 42, 316-320.
Cunty A., S. Cesbron., F. Poliakoff., M. A. Jacques., and C. Manceau, 2015. The origin of the outbreak in France of Pseudomonas syringae pv. actinidiae biovar 3, the causal agent of bacterial canker of Kiwifruit, revealed by a Multilocus Variable-number of Tandem Repeat Analysis. Applied and Environmental Microbiology 81, 6773-6789. https://doi.org/10.1128/AEM.01688-15
Eden, P.A., T. M. Schmidt., R. P. Blackemore., and N.R. Pace, 1991. Phylogenetic Analysis of Aquaspirillum magnetotacticum using Polymerase Chain Reaction Amplified 16S rRNA specific DNA. International Journal of systematic Bacteriology 41, 324-325. https://doi.org/10.1099/00207713-41-2-324
Fargier, E., Fischer-Le Saux M and C. Manceau, 2011. A multilocus sequence analysis of Xanthomonas campestris reveals a complex structure within crucifer-attacking pathovars of this species. Systematic and Applied Microbiology 34, 156–65. https://doi.org/10.1016/j.syapm.2010.09.001
Gevers, D., F. M. Cohan., J. G. Lawrence., B. G. Spratt., T. Coenye., E. G. Feil., E. Stackebrandt., Y. Van De Peer., P. Vandamme., F. L. Thompson., and J. Swings, 2005. Re-evaluating prokaryotic species. Nature Reviews Microbiology 3, 733-739. https://doi.org/10.1038/nrmicro1236
Hall TA., 1999. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids. Symposium Series 41, 95–8.
Hanage, W.P., Fraser, C. and Spratt, B. G. 2006. Sequences, sequence clusters and bacterial species. Philosophical Transactions of the Royal Society. Biological Sciences 361, 1917-1927. https://doi.org/10.1098/rstb.2006.1917
Hugh, R. and E. Leifson, 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates of various Gram- bacteria. Journal of Bacteriology 66, 24-26. https://doi.org/10.1128/JB.66.1.24-26.1953
Ignatov A. N., A. Sechler., E. L. Schuenzel., L. Agarkova., B. Oliver and A.K. Vidaver, 2007. Genetic Diversity in Populations of Xanthomonas campestris pv. campestris in Cruciferous Weeds in Central Coastal California. Phytopathology 97,803–812. https://doi.org/10.1094/PHYTO-97-7-406 0803
Janse, J. D. and M. Wenneker, 2002. Possibilities of avoidance and control of bacterial plant diseases when using pathogen-tested (certified) or treated planting material. Plant pathology 51, 523-536. https://doi.org/10.1046/j.0032-0862.2002.00756.x
Jensen B.D., J. G. Vicente., H. K. Manandhar., S.J. Roberts, 2010. Occurrence and diversity of Xanthomonas campestris pv. campestris in vegetable Brassica fields in Nepal. Plant Disease 94, 298–305. https://doi.org/10.1094/PDIS-94-3-0298
Klement Z., Rudolph K., Sands D. C., 1990. Methods in Phytobacteriology. Akademiai Kiadò, Budapest.
Kocks C. G. and J. C. Zadoks, 1996. Cabbage refuses piles as source of inoculum for black rot epidemics. Plant Disease 80, 789-792. https://doi.org/10.1094/PD-80-0789
Laala S., Z. Bouznad., and C. Manceau, 2015. Development of a new technique to detect living cells of Xanthomonas campestris pv. campestris in crucifers seeds: the seed qPCR. European Journal of Plant Pathology 141, 637-646. https://doi.org/10.1007/s10658-014-0532-4 420
Lange H.W., M. A. Tancos., M. O. Carlson and C. D. Smart, 2016. Diversity of Xanthomonas campestris isolates from symptomatic crucifers in New York State. Phytopathology 106, 113-122. https://doi.org/10.1094/PHYTO-06-15-0134-R
Lelliott R.A. and D. E. Stead, 1987. Methods in Plant Pathology, Vol. 2. Oxford, UK: Blackwell Scientific Publications.
Lema, M., M. E. Cartea., T. Sotelo., P. Velasco and P. Soengas, 2012. Discrimination of Xanthomonas campestris pv. campestris races among strains from north western Spain by Brassica spp. genotypes and rep-PCR. European Journal of Plant Pathology 133, 159–169. https://doi.org/10.1007/s10658-011-9929-5
Maiden M. C. J, 2006. Multilocus Sequence Typing of Bacteria. Annual Review of Microbiology 60, 561-588. https://doi.org/10.1146/annurev.micro.59.030804.121325
Massomo S. M. S., C. N. Mortensen., R. B. Mabagala., M. A. Newman and J. Hockenhull, 2004. Biological Control of Black Rot (Xanthomonas campestris pv. campestris) of Cabbage in Tanzania with Bacillus strains. Journal of Phytopathology 152, 98-105. https://doi.org/10.1111/j.1439-434 0434.2003.00808.x
Mulema, J., Vicente, J., Pink, D., Jackson, A., Chacha, D., Wasilwa, L., et al. 2011. Characterization of isolates that cause black rot of crucifers in East Africa. European Journal of Plant Pathology 133, 427–438. https://doi.org/10.1007/s10658-011-9916-x
Mgonja, A. P. and I. Swai, 2000. Importance of diseases and insect pests of vegetables in Tanzania and limitations in adopting the control methods. Workshop in vegetable research and development center. In: Proceedings, second national vegetable research and development planning workshop, 28-34 (Eds M L Chadha, A P Mgonja, R Nono-Womdim & I S Swai), HORTI-Tengeru, 25-26 June 1998. AVRDC-ARP Arusha, Tanzania.
Pammel, L. H. 1895. Bacteriosis of rutabaga (Bacillus campestris. sp.). Bulletin of the Iowa State College Agriculture Experiment Station 27, 130-134.
Parkinson, N., V. Aritua and J. Heeney, 2007. Phylogenetic analysis of Xanthomonas species by comparison of partial gyrase B gene sequences. International Journal of Systematic and Evolutionary Microbiology 57, 2881-2887. https://doi.org/10.1099/ijs.0.65220-0
Popovica, T., P. Mitrovi., A. Jelusic., I. Dimkicd., A. Marjanovic-Jeromelab., I. Nikolicd and S. Stankovic, 2019. Genetic diversity and virulence of Xanthomonas campestris pv. campestris isolates from Brassica napus and six Brassica oleracea crops in Serbia. Plant Pathology 2019.
Rat, B. and J. F. Chauveau, 1985. La nervation des crucifères. Phytoma, 41-42.
Rathaur PS., D. Singh., R. Raghuwanshi and DK. Yadava, 2015. Pathogenic and Genetic Characterization of Xanthomonas campestris pv. campestris Races Based on Rep-PCR and Multilocus Sequence Analysis. Journal of Plant pathology and Microbiology 6, 1-9. https://doi.org/10.4172/2157-7471.1000317
Rozas, J., SAnchez-Delbarrio, X. Jc.,Messeguer and R. Rozas, 2003. Dna SP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496-2497. https://doi.org/10.1093/bioinformatics/btg359
Schaad, N. W., 2001. Laboratory guide for identification of plant pathogenic bacteria. 3rd Edition. ISBN: 0-89054-263-5.
Schaad N. W. and J.C. Dianese, 1981. Cruciferous weeds as source of inoculum of Xanthomonas campestris in black rot of crucifers. Phytopathology 71, 1215-1220. https://doi.org/10.1094/Phyto- 71-1215
Schaad, N. W., W. R. Sitterly and H. Humaydan, 1980. Relationship of incidence of seedborne Xanthomonas campestris to black rot of crucifers. Plant Disease 64, 91-92. https://doi.org/10.1094/PD-64-91
Schaad, N. W. and W. C. White, 1974. Survival of Xanthomonas campestris in soil. Phytopathology 64, 1518-1520. https://doi.org/10.1094/Phyto-64-1518
Schultz T. and R. L. Gabrielson, 1986. Xanthomonas campestris pv. campestris in Western Washington crucifer seed fields: occurrence et survival. Phytopathology 76, 1306-1309. https://doi.org/10.1094/Phyto-76-1306
Singh D, Dhar S, Yadava DK. 2011. Genetic and pathogenic variability of Indian strains of Xanthomonas campestris pv. campestris causing black rot disease in crucifers. Current Microbiology 63, 551-560. https://doi.org/10.1007/s00284-011-0024-0
Singh D., P. S. Rathaur and J.G. Vicente, 2016. Characterization, genetic diversity and distribution of Xanthomonas campestris pv. campestris races causing black rot disease in cruciferous crops of India. Plant Pathology 65, 1411–8. https://doi.org/10.1007/s00284-011-0024-0
Swings, J. G. and E. L. Civerolo, 1993. Xantomonas, Chapman and Hall, London, UK. ISBN: 0 412 479 434202.
Tajima F. 1996. The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics 143, 1457-1465.
Tamura K. and M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
Tamura, K., G. Stecher., D. Peterson., A. Filipsk, and S. Kumar, 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729. https://doi.org/10.1093/molbev/mst197
Tancos M. A., H. W. Lange and C. D. Smart, 2015. Characterizing the genetic diversity of the New York Clavibacter michiganensis subsp. michiganensis population. Phytopathology 10, 169–179. https://doi.org/10.1094/PHYTO-06-14-0178-R
Thieme, F., Koebnik, R., Bekel,, T., Berger C., Boch, J., Buttner, D., Caldana, C., Gaigalat, L., Goesmann, A., Kay S., Kirchner, O., Lanz, C., Linke B., Mchardy, A. C., Meyer, F., Mittenhuber G., Nies D. H., Niesbach-Klosgen U., Patschkowski, T., Ruckert, C., Rupp, O., Schneiker, S., Schuster, S. C., Vorholter, F. J., Weber, E., Puhler, A., Bonas, U., Bartels, D. and Kaiser, 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium. Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. Journal of Bacteriology 187, 7254-66. https://doi.org/10.1128/JB.187.21.7254-7266.2005
Tsygankova S.V., A. N. Ignatov., E. S. Boulygina., B. B. Kuznetsov and E. V. Korotkov, 2004. Genetic relationships among strains of Xanthomonas campestris pv. campestris revealed by novel rep-PCR primers. European Journal of Plant Pathology 110, 845-853. https://doi.org/10.1007/s10658-004-2726-7
Vogler, A. J., Keys, C., Nemoto, Y., R. E. Colman., Z. Jay., P. Keim, 2006. Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157: H7. Journal of Bacteriology 188, 4253–4263. https://doi.org/10.1128/JB.00001-06
Weller D. M. and A. W. Saettler, 1980. Evaluation of seedborne Xanthomonas phaseoli and Xanthomonas phaseoli var. fuscans as primary inocula in bean blights. Phytopathology 70, 148-152. https://doi.org/10.1094/Phyto-70-148
Wicker, E., P. Lefeuvre., J. C. De Cambiaire., C. Lemaire., S. Poussier and P. Prior, 2012. Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA. ISME Journal Multidisciplinary Journal of Microbial Ecology 6, 961–974. https://doi.org/10.1038/ismej.2011.160
Young J. M., D. C. Parka., H. M. Shearmanb and E. Fargier, 2008. A multilocus sequence analysis of the genus Xanthomonas. Systematic and Applied Microbiology 31, 366–377. https://doi.org/10.1016/j.syapm.2008.06.004
Youseif S. H., F. H. Abd El-Megeed., A. Ageez., E. C. Cocking and S. A. Saleh, 2014. Phylogenetic multilocus sequence analysis of native rhizobia nodulating faba bean (Vicia faba L.) in Egypt. Systematic and Applied Microbiology 37, 560-569. https://doi.org/10.1016/j.syapm.2014.10.001
Zaccardelli M., F. Campanile., C. Moretti and R. Buonaurio, 2008. Characterization of Italian populations of Xanthomonas campestris pv. campestris using primers based on DNA repetitive sequences. Journal of Plant Pathology 90, 375–381