Vol. 64 No. 1 (2025)
Articles

Molecular Detection and characterization of viruses infecting greenhouse-grown tomatoes in Albania

Magdalena CARA
Agriculture University of Tirana, Rruga Paisi Vodica 1025, Tirana, Albania
Amani BEN SLIMEN
International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
Enea MITRI
International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
Orges CARA
International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
Dajana FRASHERI
International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
Jordan MERKURI
Nanobalkan, Academy of Sciences of Albania, Murat Toptani Avenue, 1000 Tirana, Albania
Giuseppe PARRELLA
Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Portici, Italy
Toufic ELBEAINO
Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Portici, Italy
Categories

Published 2025-05-14

Keywords

  • RT-PCR,
  • qPCR,
  • next-generation sequencing,
  • phylogenetic analysis,
  • emerging viruses

How to Cite

[1]
M. CARA, “Molecular Detection and characterization of viruses infecting greenhouse-grown tomatoes in Albania”, Phytopathol. Mediterr., vol. 64, no. 1, pp. 77–86, May 2025.

Abstract

During the 2023–2024 growing season, a total of 45 tomato greenhouses were visited across five major production regions of Albania (Berat, Lushnje, Fier, Tirana, and Shkodra). A total of 196 greenhouse-grown tomato leaf samples, representing 31 varieties, were collected from plants showing virus-like symptoms. All samples were tested by RT-PCR and qPCR assays for the possible presence of significant tomato-infecting viruses and viroids, including alfalfa mosaic virus (AMV), cucumber mosaic virus (CMV), tomato brown rugose fruit virus (ToBRFV), tomato yellow leaf curl virus (TYLCV), tomato chlorosis virus (ToCV), tomato infectious chlorosis virus (TICV), tomato mottle mosaic virus (ToMMV), tomato spotted wilt virus (TSWV), tomato mild mottle virus (ToMMoV), tobacco mosaic virus (TMV), pepino mosaic virus (PepMV), potato viruses X and Y (PVX, PVY), potato leafroll virus (PLRV), tomato apical stunt viroid (TASVd), and potato spindle tuber viroid (PSTVd). In addition, Next-generation sequencing (NGS) using Illumina and MinION nanopore technologies were performed to characterize the complete genome of two Albanian ToBRFV isolates. RT-PCR and qPCR showed that ToCV, ToBRFV, AMV, and CMV were present in 25, 9.1, 4.1, and 4.1% of the samples, respectively, whereas all remaining viruses and viroids were absent. Illumina and MinION sequencing unveiled the complete genome sequences of ToBRFV (6,381 nucleotides) and of two additional viruses, i.e., Southern tomato virus, STV (3,437 nts) and tobacco vein clearing virus, TVCV (7,596 nts), both of which were not included in our initial screening. The two latter viruses were afterward diagnosed by PCR and found to be present in 2 and 3% of the tested samples, respectively. ToCV was most prevalent in Lushnje and Fier regions, while ToBRFV in Berat and Fier. The phylogenetic analyses predominantly clustered together the different Albanian viruses isolate, suggesting a local or regional origin. This study reports for the first time the presence of STV and TVCV in Albania and highlights the emergence of ToCV and ToBRFV in the country.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Agindotan B.O., Shiel P.J., Berger P.H., 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqMan® real-time RT-PCR. Journal of Virological Methods 142: 1–9. DOI: https://doi.org/10.1016/j.jviromet.2006.12.012
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Boben J., Kramberger P., Petrovič N., Cankar K., Peterka M., Štrancar A., Ravnikar M., 2007. Detection and quantification of Tomato mosaic virus in irrigation waters. European Journal of Plant Pathology 118: 59–71. DOI: https://doi.org/10.1007/s10658-007-9112-1
  4. Cárdenas H.M., Sánchez P.G., Montoya M.M., 2017. Detection and sequencing of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro. Acta Agronómica 66: 625–632. DOI: https://doi.org/10.15446/acag.v66n4.59753
  5. Dhuli E., 2022. Vjetari Rajonal Statistikor 2022. INSTAT.
  6. Doyle J., 1991. DNA protocols for plants. In: Molecular Techniques in Taxonomy. Springer, Berlin Heidelberg, D., 283-293. DOI: https://doi.org/10.1007/978-3-642-83962-7_18
  7. FAO, 2022. Statistical Yearbook. Food and Agriculture Organization of the United Nations. Rome, Italy.
  8. Finetti‐Sialer M., Mërkuri J., Tauro G., Myrta A., Gallitelli D., 2005. Viruses of vegetable crops in Albania. EPPO Bulletin 35: 491–495. DOI: https://doi.org/10.1111/j.1365-2338.2005.00892.x
  9. Fowkes A., Botermans M., Frew L., de Koning P., Buxton‐Kirk A., Westenberg M., Ward R., Schenk M., Webster G., Alraiss K., 2022. First report of Tomato mottle mosaic virus in Solanum lycopersicum seeds in The Netherlands and intercepted in seed imported from Asia. New Disease Reports 45. DOI: https://doi.org/10.1002/ndr2.12067
  10. Hirota T., Natsuaki T., Murai T., Nishigawa H., Niibori K., Goto K., Hartono S., Suastika G., Okuda S., 2010. Yellowing disease of tomato caused by Tomato chlorosis virus newly recognized in Japan. Journal of General Plant Pathology 76: 168–171. DOI: https://doi.org/10.1007/s10327-010-0219-4
  11. Ling K.-S., 2007. Molecular characterization of two Pepino mosaic virus variants from imported tomato seed reveals high levels of sequence identity between Chilean and US isolates. Virus Genes 34: 1–8. DOI: https://doi.org/10.1007/s11262-006-0003-x
  12. Ling K.-S., Tian T., Gurung S., Salati R., Gilliard A., 2019. First report of tomato brown rugose fruit virus infecting greenhouse tomato in the United States. Plant Disease 103: 1439. DOI: https://doi.org/10.1094/PDIS-11-18-1959-PDN
  13. Lozano G., Moriones E., Navas-Castillo J., 2006. Complete nucleotide sequence of the RNA2 of the crinivirus Tomato chlorosis virus. Archives of Virology 151: 581–587. DOI: https://doi.org/10.1007/s00705-005-0690-y
  14. Orfanidou C.G., Cara M., Merkuri J., Papadimitriou K., Katis N.I., Maliogka V.I., 2022a. First report of tomato brown rugose fruit virus in tomato in Albania. Journal of Plant Pathology 104: 855–855. DOI: https://doi.org/10.1007/s42161-022-01060-y
  15. Orfanidou C.G., Cara M., Merkuri J., Katis N.I., Maliogka V.I., 2022b. First report of tomato chlorosis virus in tomato in Albania. Journal of Plant Pathology 104, 1177. DOI: https://doi.org/10.1007/s42161-022-01148-5
  16. Panno S., Caruso A., Davino S., 2019. First report of tomato brown rugose fruit virus on tomato crops in Italy. Plant Disease 103: 1443–1443. DOI: https://doi.org/10.1094/PDIS-12-18-2254-PDN
  17. Papayiannis L.C., Iacovides T.A., Katis N., Brown J., 2010. Differentiation of Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus using real-time TaqMan® PCR. Journal of Virological Methods 165: 238–245. DOI: https://doi.org/10.1016/j.jviromet.2010.02.003
  18. Roberts C.A., Dietzgen R.G., Heelan L.A., Maclean D.J., 2000. Real-time RT-PCR fluorescent detection of tomato spotted wilt virus. Journal of Virological Methods 88: 1–8. DOI: https://doi.org/10.1016/S0166-0934(00)00156-7
  19. Srivastava N., Kapoor R., Kumar R., Kumar S., Saritha R., Kumar S., Baranwal V.K., 2019. Rapid diagnosis of Cucumber mosaic virus in banana plants using a fluorescence-based real-time isothermal reverse transcription-recombinase polymerase amplification assay. Journal of Virological Methods 270: 52–58. DOI: https://doi.org/10.1016/j.jviromet.2019.04.024
  20. Sui X., Zheng Y., Li R., Padmanabhan C., Tian T., Groth-Helms D., Keinath A.P., Fei Z., Wu Z., Ling K.-S., 2017. Molecular and biological characterization of tomato mottle mosaic virus and development of RT-PCR detection. Plant Disease 101: 704–711. DOI: https://doi.org/10.1094/PDIS-10-16-1504-RE
  21. Foissac X., Svanella-Dumas L., Dulucq M., Candresse T., Gentit P., 2000. Polyvalent detection of fruit tree tricho, capillo and foveaviruses by nested RT-PCR using degenerated and inosine containing primers (PDO RT-PCR). XVIII International Symposium on Virus and Virus-like Diseases of Temperate Fruit Crops-Top Fruit Diseases 550: 37–44. DOI: https://doi.org/10.17660/ActaHortic.2001.550.2
  22. Trucco V., Castellanos Collazo O., Vaghi Medina C.G., Cabrera Mederos D., Lenardon S., Giolitti F., 2022. Alfalfa mosaic virus (AMV): Genetic diversity and a new natural host. Journal of Plant Pathology 104: 349–356. DOI: https://doi.org/10.1007/s42161-021-00961-8
  23. Vaira A., Accotto G., Vecchiati M., Bragaloni M., 2002. Tomato infectious chlorosis virus causes leaf yellowing and reddening of tomato in Italy. Phytoparasitica 30: 290–294. DOI: https://doi.org/10.1007/BF03039998
  24. Verhoeven J.T.J., Botermans M., Meekes E., Roenhorst J., 2012. Tomato apical stunt viroid in the Netherlands: most prevalent pospiviroid in ornamentals and first outbreak in tomatoes. European Journal of Plant Pathology 133: 803–810. DOI: https://doi.org/10.1007/s10658-012-0005-6
  25. Xinying Y., Xin L., Lili Y., Qiuyue Z., Yongzhe P., Jijuan C., 2022. Detection of Cucumber green mottle mosaic virus in low-concentration virus-infected seeds by improved one-step pre-amplification RT-qPCR. Plant Methods 18: 70. DOI: https://doi.org/10.1186/s13007-022-00901-2
  26. Xu H., Nie J., 2006. Identification, characterization, and molecular detection of Alfalfa mosaic virus in potato. Phytopathology 96: 1237–1242. DOI: https://doi.org/10.1094/PHYTO-96-1237
  27. Yang J.-G., Wang F.-L., Chen D.-X., Shen L.-L., Qian Y.-M., Liang Z.-Y., Zhou W.-C., Yan T.-H., 2012. Development of a one-step immunocapture real-time RT-PCR assay for detection of Tobacco mosaic virus in soil. Sensors 12: 16685–16694. DOI: https://doi.org/10.3390/s121216685