Vol. 64 No. 2 (2025)
Articles

Gnomoniopsis paraclavulata, a previously unrecorded causal agent of oak decline in Italy

Simone MAVICA
Department of Agriculture, Food and Environment, University of Catania, 95123, Via S. Sofia 100, Catania, Italy
Giuseppa Rosaria LEONARDI
Department of Agriculture, Food and Environment, University of Catania, 95123, Via S. Sofia 100, Catania, Italy
Giancarlo POLIZZI
Department of Agriculture, Food and Environment, University of Catania, 95123, Via S. Sofia 100, Catania, Italy
Dalia AIELLO
Department of Agriculture, Food and Environment, University of Catania, 95123, Via S. Sofia 100, Catania, Italy

Published 2025-09-12

Keywords

  • Fungal diseases,
  • Quercus pubescens,
  • Dieback,
  • wood necrosis

How to Cite

[1]
S. MAVICA, G. R. LEONARDI, G. POLIZZI, and D. AIELLO, “Gnomoniopsis paraclavulata, a previously unrecorded causal agent of oak decline in Italy”, Phytopathol. Mediterr., vol. 64, no. 2, pp. 183–190, Sep. 2025.

Abstract

Oak trees (Quercus pubescens) showing symptoms of twig and branch dieback, internal wood necroses, and decline, were surveyed in a public park located in Catania province (eastern Sicily, Italy). Gnomoniopsis-like fungi were consistently isolated from symptomatic wood tissues. Based on morphology and phylogenetic analyses of ITS, tef1 and tub2 loci, the fungi were identified as Gnomoniopsis paraclavulata. A pathogenicity test was conducted by inoculating stems of 1-year-old oak seedlings with mycelium plugs of a representative G. paraclavulata isolate. Three months after inoculation, internal necrosis around inoculation points and twig dieback were observed. Colonies of G. paraclavulata were reisolated from necrotic tissues of inoculated plants, fulfilling Koch’s postulates. This is the first report of G. paraclavulata causing dieback and decline on Q. pubescens trees.

Downloads

Download data is not yet available.

References

  1. Alves A., Crous P.W., Correia A.C.R.B., Phillips A.J.L., 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity 28(1): 1–13. http://www.fungaldiversity.org/fdp/sfdp/28-1.pdf
  2. Bashiri S., Abdollahzadeh J., 2024. Taxonomy and pathogenicity of fungi associated with oak decline in northern and central Zagros forests of Iran with emphasis on coelomycetous species. Frontiers in Plant Science 15: 1377441. https://doi.org/10.3389/fpls.2024.1377441 DOI: https://doi.org/10.3389/fpls.2024.1377441
  3. Bottari C., Capizzi P., Martorana R., Azzaro R., Branca S., … Pecora E., 2022. Diagnostic multidisciplinary investigations for cultural heritage at etna volcano: A case study from the 1669 eruption in the mother church at the old settlement of Misterbianco. Remote Sensing 14(10), 2388. https://doi.org/10.3390/rs14102388 DOI: https://doi.org/10.3390/rs14102388
  4. Cárdenas A.M., Gallardo P., 2018. Assessment and monitoring damage by Coraebus florentinus (Coleoptera: Buprestidae) in Mediterranean oak forests. Open Journal of Ecology 8(5): 324. https://doi.org/10.4236/oje.2018.85020 DOI: https://doi.org/10.4236/oje.2018.85020
  5. Gallardo P., Cárdenas A.M., Soriano J.M., 2018. Long-term assessment of selective pruning of Quercus species for controlling populations of Coraebus florentinus (Coleoptera: Buprestidae) in Mediterranean forests. Forests 9: 1–14. https://doi.org/10.3390/f9020049 DOI: https://doi.org/10.3390/f9020049
  6. Glass N.L., Donaldson G.C., 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied Environmental Microbiology 61: 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995 DOI: https://doi.org/10.1128/aem.61.4.1323-1330.1995
  7. Gianguzzi L., Papini F., Cusimano D., 2015. Phytosociological survey vegetation map of Sicily (Mediterranean region). Journal of Maps 12(5), 845–851. https://doi.org/10.1080/17445647.2015.1094969 DOI: https://doi.org/10.1080/17445647.2015.1094969
  8. Hall T.A., 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
  9. Jankowiak R., Stępniewska H., Bilański P., Taerum S.J., 2022. Fungi as potential factors limiting natural regeneration of pedunculate oak (Quercus robur) in mixed‐species forest stands in Poland. Plant Pathology 71(4), 805-817. https://doi.org/10.1111/ppa.13529 DOI: https://doi.org/10.1111/ppa.13529
  10. Jiang N., Voglmayr H., Bian D.R., Piao C.G., Wang S.K., Li Y., 2021. Morphology and phylogeny of Gnomoniopsis (Gnomoniaceae, Diaporthales) from Fagaceae leaves in China. Journal of Fungi 7(10): 792. https://doi.org/10.3390/jof7100792 DOI: https://doi.org/10.3390/jof7100792
  11. La Mantia T., Cullotta S., Garfi G., 2003. Phenology and growth of Quercus ilex L. in different environmental conditions in Sicily (Italy). Ecologia Mediterranea 29(1): 15–25. DOI: https://doi.org/10.3406/ecmed.2003.1525
  12. Li Y., Li A., Jiang N., 2025. Identification of the nut rot pathogen affecting Castanopsis carlesii based on morphological and phylogenetic analyses. Forests 16(4): 627. https://doi.org/10.3390/f16040627 DOI: https://doi.org/10.3390/f16040627
  13. Linaldeddu B.T., Maddau L., Franceschini A., 2017. First report of Diplodia corticola causing canker and dieback of Quercus ilex, Q. petraea and Q. suber in Corsica (France). Plant Disease 101: 256. https://doi.org/10.1094/PDIS-07-16-1076-PDN DOI: https://doi.org/10.1094/PDIS-07-16-1076-PDN
  14. Linaldeddu B.T., Scanu B., Maddau L., Franceschini A., 2014. Diplodia corticola and Phytophthora cinnamomi: the main pathogens involved in holm oak decline on Caprera Island (Italy). Forest Pathology 44: 191–200. https://doi.org/10.1111/efp.12081 DOI: https://doi.org/10.1111/efp.12081
  15. Moricca S., Ragazzi A., 2008. Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98: 380–386. https://doi.org/10.1094/PHYTO-98-4-0380 DOI: https://doi.org/10.1094/PHYTO-98-4-0380
  16. O’Donnell K., Kistler H.C., Cigelnik E., Ploetz R.C., 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences 95(5): 2044–2049. DOI: https://doi.org/10.1073/pnas.95.5.2044
  17. Pinna C., Linaldeddu B.T., Deiana V., Maddau L., Montecchio L., Lentini A., 2019. Plant pathogenic fungi associated with Coraebus florentinus (Coleoptera: Buprestidae) attacks in declining oak forests. Forests 10(6), 488. https://doi.org/10.3390/f10060488 DOI: https://doi.org/10.3390/f10060488
  18. Sallé A., Nageleisen L.M., Lieutier F., 2014. Bark and wood boring insects involved in oak declines in Europe: current knowledge and future prospects in a context of climate change. Forest Ecology and Management 328: 79–93. https://doi.org/10.1016/j.foreco.2014.05.027 DOI: https://doi.org/10.1016/j.foreco.2014.05.027
  19. Scortichini M., 2025. Similarities and differences among factors affecting complex declines of Quercus spp., Olea europaea, and Actinidia chinensis. Horticulturae 11: 325. https://doi.org/10.3390/horticulturae11030325 DOI: https://doi.org/10.3390/horticulturae11030325
  20. Silvestro D., Michalak I., 2012. RaxmlGUI: A graphical front-end for RAxML. Organisms, Diversity & Evolution 12(4): 335–337. https://doi.org/10.1007/s13127-011-0056-0 DOI: https://doi.org/10.1007/s13127-011-0056-0
  21. Smith S.A., Dunn C.W., 2008. Phyutility: A phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24(5): 715–716. https://doi.org/10.1093/bioinformatics/btm619 DOI: https://doi.org/10.1093/bioinformatics/btm619
  22. Sogonov M.V., Castlebury L.A., Rossman A.Y., Mejía L.C., White J.F., 2008. Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Studies in Mycology 62: 179. https://doi.org/10.3114/sim.2008.62.01 DOI: https://doi.org/10.1016/S0166-0616(14)60111-1
  23. Stamatakis E., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446 DOI: https://doi.org/10.1093/bioinformatics/btl446
  24. Swofford D.L., 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0a165. Sinauer Associates, Sunderland, Massachusetts, USA.
  25. Tantray Y.R., Wani M.S., Hussain A., 2017. Genus Quercus: an overview. International Journal of Advance Research in Science and Engineering 6(8): 1880–1886.
  26. Walker D.M., Castlebury L.A., Rossman A.Y., Sogonov M.V., White J.F., 2010. Systematics of genus Gnomoniopsis (Gnomoniaceae, Diaporthales) based on a three-gene phylogeny, host associations and morphology. Mycologia 102: 1479–1496. https://doi.org/10.3852/10-002 DOI: https://doi.org/10.3852/10-002
  27. White T.J., Bruns T., Lee S.J.W.T., Taylor J.L., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (Eds.), PCR Protocols: a guide to methods and applications. Academic Press, New York: 315–321. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1