Vol. 64 No. 2 (2025)
Articles

Occurrence of Grapevine fanleaf virus in Algerian vineyards, and complete genome sequencing

Nour Elhouda LAIDOUDI
Laboratory of applied Microbiology, Department of Agronomy, Faculty of Natural and Life Sciences, Ferhat Abbas University
Osamah ALISAWI
Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq
Bilal YAHIAOUI
Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif, Algeria
Anfel DJENAOUI
Phytopathology and molecular biology laboratory, National high school of agronomy, Belfort, Elharrach, Algiers, Algeria
Imane MAHDID
Phytopathology and molecular biology laboratory, National high school of agronomy, Belfort, Elharrach, Algiers, Algeria
Adel BACHIR
Phytopathology and molecular biology laboratory, National high school of agronomy, Belfort, Elharrach, Algiers, Algeria
Francesca DE LUCA
Istituto per la Protezione delle Piante, UOS-Bari, Consiglio Nazionale delle Richerche (C.N.R.), Via Amendola 122/D, 70126 Bari, Italy
Elena FANELLI
Istituto per la Protezione delle Piante, UOS-Bari, Consiglio Nazionale delle Richerche (C.N.R.), Via Amendola 122/D, 70126 Bari, Italy
Angelantonio MINAFRA
Istituto per la Protezione delle Piante, UOS-Bari, Consiglio Nazionale delle Richerche (C.N.R.), Via Amendola 122/D, 70126 Bari, Italy
Naima MAHFOUDHI
Laboratoire de Protection des Végétaux, Institut National de la Recherche Agronomique de Tunisie, Rue Hedi Karray, 2049 Ariana, Tunisia
Arezki LEHAD
Phytopathology and molecular biology laboratory, National high school of agronomy, Belfort, Elharrach, Algiers, Algeria

Published 2025-09-12

Keywords

  • DAS-ELISA,
  • High Throughput Sequencing,
  • RT-PCR,
  • Grapevine,
  • GFLV

How to Cite

[1]
N. E. LAIDOUDI, “Occurrence of Grapevine fanleaf virus in Algerian vineyards, and complete genome sequencing”, Phytopathol. Mediterr., vol. 64, no. 2, pp. 219–228, Sep. 2025.

Abstract

Prevalence and genetic diversity of Grapevine fanleaf virus (Nepovirus foliumflabelli, GFLV) were determined in vineyards and grape varieties in Algeria. Samples (414) from different cultivars and viticulture areas were screened using DAS-ELISA and partially confirmed by RT-PCR, revealing 21% infection incidence. In Ahmer Bou Amer the greatest incidence of infection was recorded (61%). Some vines, confirmed to be GFLV-infected, had characteristic symptoms of leaf yellowing, chloroses, and mosaic patterns, reducing vine vigour and fruit quality. High throughput sequencing and bioinformatics analyses of a single GFLV-infected accession obtained a nearly complete grapevine fanleaf virus RNA1 consensus sequence of 5,979 nt, and an RNA2 with complete consensus sequence of 3,711 nt. Grapevine yellow speckle viroid, Hop stunt viroid and other viruses were also identified in the ‘background’ virome. Phylogenetic analyses of an amplified fragment of the GFLV coat protein gene from some of the accessions indicated close genetic relationships between Algerian and Russian/United States of America GFLV isolates, suggesting potential shared origins or transmission pathways. These results emphasize the need for implementing strict phytosanitary measures (e.g. use of virus-free planting material) to mitigate GFLV spread and its detrimental effects on grapevine production in Algeria.

Downloads

Download data is not yet available.

References

  1. Adams AN., Clark MF., 1977. Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. Journal of General Virology 34: 475–483. https://doi.org/10.1099/0022-1317-34-3-475 DOI: https://doi.org/10.1099/0022-1317-34-3-475
  2. Adams I.P., Glover R.H., Monger W.A., Mumford R., Jackeviciene E., … Boonham N., 2009. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Molecular Plant Pathology 10: 537–545. https://doi.org/10.1111/j.1364-3703.2009.00545.x DOI: https://doi.org/10.1111/j.1364-3703.2009.00545.x
  3. Al Rwahnih M., Daubert S., Golino D., Islas C., Rowhani A., 2015. Comparison of Next-Generation Sequencing Versus Biological Indexing for the Optimal Detection of Viral Pathogens in Grapevine. Phytopathology 105: 758–763. https://doi.org/10.1094/PHYTO-06-14-0165-R DOI: https://doi.org/10.1094/PHYTO-06-14-0165-R
  4. Andret-Link P., Laporte C., Valat L, Ritzenthaler C., Demangeat G., Vigne E., … Fuchs M., 2004. Grapevine fanleaf virus: still a major threat to the grapevine industry. Journal of Plant Pathology 86: 183–195.
  5. Barba M., Czosnek H., Hadidi A., 2014. Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses 6: 106–136. https://doi.org/10.3390/v6010106 DOI: https://doi.org/10.3390/v6010106
  6. Brister J.R., Ako-adjei D., Bao Y., Blinkova O., 2015. NCBI Viral Genomes Resource. Nucleic Acids Research 43: D571–D577. https://doi.org/10.1093/nar/gku1207 DOI: https://doi.org/10.1093/nar/gku1207
  7. Cigsar I., Digiaro M., Gokalp K., Ghanem-Sabanadzovic NA., De Stradis A., ...Martelli G.P., 2003. Grapevine deformation virus, a novel nepovirus from Turkey. Journal of Plant Pathology 85: 183–191.
  8. Demangeat G., 2007. Transmission des Nepovirus par les nématodes Longidoridae. Virologie 11: 14. https://doi.org/10.1684/vir.2007.0102
  9. Di Serio F., Izadpanah K., Hajizadeh M., Navarro B., 2017. Viroids Infecting the Grapevine. In: Grapevine Viruses: Molecular Biology, Diagnostics and Management. (Meng B., Martelli G.P., Golino D.A., Fuchs M. ed.). Cham, Switzerland, Springer International Publishing AG, pp 373–392. DOI: https://doi.org/10.1007/978-3-319-57706-7_19
  10. Digiaro M., Elbeaino T., Martelli G.P., 2017. Grapevine fanleaf virus and Other Old World Nepoviruses. In: Grapevine Viruses: Molecular Biology, Diagnostics and Management. (Meng B., Martelli G.P., Golino D.A., Fuchs M. ed.). Cham, Switzerland, Springer International Publishing AG, pp 47–82. DOI: https://doi.org/10.1007/978-3-319-57706-7_3
  11. El Sayed T., Saker K., El Shorbagy A., Mandour A., Alajouz M., Soliman A., 2023. Characterization and Elimination of Grapevine fanleaf virus Using Thermotherapy in Combination with Meristem Tip Culture. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology 15: 101–117. https://doi.org/10.21608/eajbsc.2023.312619 DOI: https://doi.org/10.21608/eajbsc.2023.312619
  12. Elbeaino T., Kiyi H., Boutarfa R., Minafra A., Martelli G.P., Digiaro M., 2014. Phylogenetic and recombination analysis of the homing protein domain of grapevine fanleaf virus (GFLV) isolates associated with ‘yellow mosaic’ and ‘infectious malformation’ syndromes in grapevine. Archives of Virology 159: 2757–2764. https://doi.org/10.1007/s00705-014-2138-8 DOI: https://doi.org/10.1007/s00705-014-2138-8
  13. Erilmez S., Kaya A., 2016. Comparison of DAS-ELISA and RT-PCR methods for the diagnosis of grapevine viruses. Bitki Koruma Bülteni 56: 297–302.
  14. Everaert E.A., Viaene N., Quataert P., Haegeman A., De Jonghe K., 2024. Towards Improved Nepovirus Detection and Identification in Xiphinema Nematodes. PhytoFrontiersTM PHYTOFR-03-24-0018-R. https://doi.org/10.1094/PHYTOFR-03-24-0018-R DOI: https://doi.org/10.1094/PHYTOFR-03-24-0018-R
  15. Fattouch S., Acheche H., M’hirsi S., Mellouli L., Bejar S., Marrakchi M., Marzouki N., 2005 RT-PCR–RFLP for genetic diversity analysis of Tunisian Grapevine fanleaf virus isolates in their natural host plants. Journal of Virological Methods 127: 126–132. https://doi.org/10.1016/j.jviromet.2005.03.008 DOI: https://doi.org/10.1016/j.jviromet.2005.03.008
  16. FAOSTAT, 2022. FAOSTAT: Crops and livestock products – Grapevines. Food and Agriculture Organization of the United Nations. Available at https://www.fao.org/faostat/en/#data/QCL/visualize. Accessed 12 Aug 2024
  17. Fuchs M., 2024. Grapevine viruses: Did you say more than a hundred? Journal of Plant Pathology 107: 217–227. https://doi.org/10.1007/s42161-024-01819-5 DOI: https://doi.org/10.1007/s42161-024-01819-5
  18. Fuchs M., Schmitt-Keichinger C., Sanfaçon H., 2017. A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors. Advances in Virus Research 67: 61–105. DOI: https://doi.org/10.1016/bs.aivir.2016.08.009
  19. Gambino G., Perrone I., Gribaudo I., 2008. A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis 19: 520–525. https://doi.org/10.1002/pca.1078 DOI: https://doi.org/10.1002/pca.1078
  20. Gholampour Z., Zakiaghl M., Asquini E., Moser M., Gualandri V., Mehrvar M., Si-Ammour A., 2024. Application of High-Throughput Sequencing for Comprehensive Virome Profiling in Grapevines Shows Yellows in Iran. Viruses 16: 204. https://doi.org/10.3390/v16020204 DOI: https://doi.org/10.3390/v16020204
  21. Hily J-M., Candresse T., Garcia S., Vigne E., Tannière M., …Lemaire O., 2018. High-Throughput Sequencing and the Viromic Study of Grapevine Leaves: From the Detection of Grapevine-Infecting Viruses to the Description of a New Environmental Tymovirales Member. Frontiers in Microbiology 9: 1782. https://doi.org/10.3389/fmicb.2018.01782 DOI: https://doi.org/10.3389/fmicb.2018.01782
  22. Kaponi M., Kyriakopoulou P.E., Hadidi A., 2024. Viroids of the Mediterranean Basin. Viruses 16:612. https://doi.org/10.3390/v16040612 DOI: https://doi.org/10.3390/v16040612
  23. Kearse M., Sturrock S., Meintjes P., 2012a The Geneious 6.0.3 Read Mapper. Auckland, New Zealand: Biomatters, Ltd.
  24. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Drummond A., 2012b. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 DOI: https://doi.org/10.1093/bioinformatics/bts199
  25. Khaffajah B., Alisawi O., Al Fadhl F., 2022. Genome sequencing of eggplant reveals Eggplant mild leaf mottle virus existence with associated two endogenous viruses in diseased eggplant in Iraq. Archives of Phytopathology and Plant Protection 55: 1930–1943. https://doi.org/10.1080/03235408.2022.2123601 DOI: https://doi.org/10.1080/03235408.2022.2123601
  26. Krebelj AJ., Čepin U., Ravnikar M., Novak M.P., 2015. Spatio-temporal distribution of Grapevine fanleaf virus (GFLV) in grapevine. European Journal of Plant Pathology 142: 159–171. https://doi.org/10.1007/s10658-015-0600-4 DOI: https://doi.org/10.1007/s10658-015-0600-4
  27. Kreuze J.F., Perez A., Untiveros M., Quispe D., Fuentes S., Barker I., Simon R., 2009. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 388: 1–7. https://doi.org/10.1016/j.virol.2009.03.024 DOI: https://doi.org/10.1016/j.virol.2009.03.024
  28. Kubina J., Hily J.M., Mustin P., Komar V., Garcia S., …Vigne E., 2022. Characterization of Grapevine Fanleaf Virus Isolates in ‘Chardonnay’ Vines Exhibiting Severe and Mild Symptoms in Two Vineyards. Viruses 14: 2303. https://doi.org/10.3390/v14102303 DOI: https://doi.org/10.3390/v14102303
  29. Liebenberg A., Freeborough M.J., Visser C.J., Bellstedt D.U., Burger J.T., 2009. Genetic variability within the coat protein gene of Grapevine fanleaf virus isolates from South Africa and the evaluation of RT-PCR, DAS-ELISA and ImmunoStrips as virus diagnostic assays. Virus Research 142: 28–35. https://doi.org/10.1016/j.virusres.2009.01.016 DOI: https://doi.org/10.1016/j.virusres.2009.01.016
  30. MacKenzie D.J., McLean M.A., Mukerji S., Green M., 1997. Improved RNA Extraction from Woody Plants for the Detection of Viral Pathogens by Reverse Transcription-Polymerase Chain Reaction. Plant Disease 81: 222–226. https://doi.org/10.1094/PDIS.1997.81.2.222 DOI: https://doi.org/10.1094/PDIS.1997.81.2.222
  31. Martelli G.P., 2014. Directory of virus and virus-like diseases of the grapevine and their agents. Journal of Plant Pathology 96(1) Suppl., 136 pp. DOI: https://doi.org/10.1002/9780470015902.a0000766.pub3
  32. Martin I.R., Vigne E., Velt A., Hily J-M., Garcia S., …Schmitt-Keichinger C., 2021. Severe Stunting Symptoms upon Nepovirus Infection Are Reminiscent of a Chronic Hypersensitive-like Response in a Perennial Woody Fruit Crop. Viruses 13: 2138. https://doi.org/10.3390/v13112138 DOI: https://doi.org/10.3390/v13112138
  33. Massart S., Olmos A., Jijakli H., Candresse T., 2014. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Research 188: 90–96. https://doi.org/10.1016/j.virusres.2014.03.029 DOI: https://doi.org/10.1016/j.virusres.2014.03.029
  34. Mekuria T.A., Gutha L.R., Martin R.R., Naidu R.A., 2009. Genome Diversity and Intra- and Interspecies Recombination Events in Grapevine fanleaf virus. Phytopathology® 99: 1394–1402. https://doi.org/10.1094/PHYTO-99-12-1394 DOI: https://doi.org/10.1094/PHYTO-99-12-1394
  35. Miljanić V., Rusjan D., Škvarč A., Chatelet P., Štajner N., 2022. Elimination of eight viruses and two viroids from preclonal candidates of six grapevine varieties (Vitis vinifera L.) through in vivo thermotherapy and in vitro meristem tip micrografting. Plants 11: 1064. https://doi.org/10.3390/plants11081064 DOI: https://doi.org/10.3390/plants11081064
  36. Mokili J.L., Rohwer F., Dutilh B.E., 2012. Metagenomics and future perspectives in virus discovery. Current Opinion in Virology 2: 63–77. https://doi.org/10.1016/j.coviro.2011.12.004 DOI: https://doi.org/10.1016/j.coviro.2011.12.004
  37. M’rabet Samaali B., Loulou A., MougouHamdane A., Kallel S., 2024. Acquisition and transmission of Grapevine fanleaf virus (GFLV) by Xiphinema index and Xiphinema italiae (Longidoridae). Journal of Helminthology 98: e26. https://doi.org/10.1017/S0022149X24000154 DOI: https://doi.org/10.1017/S0022149X24000154
  38. Panattoni A., Triolo E., 2010. Susceptibility of grapevine viruses to thermotherapy on in vitro collection of Kober 5BB. Scientia Horticulturae 125: 63–67. https://doi.org/10.1016/j.scienta.2010.03.001 DOI: https://doi.org/10.1016/j.scienta.2010.03.001
  39. Panno S., Caruso A.G., Bertacca S., Pisciotta A., Di Lorenzo R., … Davino S., 2021. Genetic structure and molecular variability of grapevine fanleaf virus in sicily. Agriculture 11(6): 496. https://doi.org/10.3390/agriculture11060496 DOI: https://doi.org/10.3390/agriculture11060496
  40. Porotikova E., Terehova U., Volodin V., Yurchenko E., Vinogradova S., 2021. Distribution and genetic diversity of grapevine viruses in Russia. Plants 10: 1080. https://doi.org/10.3390/plants10061080 DOI: https://doi.org/10.3390/plants10061080
  41. Sanfaçon H., Wellink J., Le Gall O., Karasev A., van der Vlugt R., Wetzel T., 2009. Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Archives of Virology 154: 899–907. https://doi.org/10.1007/s00705-009-0367-z DOI: https://doi.org/10.1007/s00705-009-0367-z
  42. Schmitt-Keichinger C., Hemmer C., Berthold F., Ritzenthaler C., 2017. Molecular, Cellular, and Structural Biology of Grapevine fanleaf virus. In: Grapevine Viruses: Molecular Biology, Diagnostics and Management. (Meng B., Martelli G.P., Golino D.A., Fuchs M. ed.). Cham, Switzerland, Springer International Publishing AG, pp. 83–107 DOI: https://doi.org/10.1007/978-3-319-57706-7_4
  43. Tahirine M., Louanchi M., Aitouada M., 2020. Actualisation à la révélation de deux virus responsables à la maladie du court noué de la vigne du genre Vitis dans la région Centre et Ouest de l’Algérie par voie sérologique et biochimique. Journal Algérien des Régions Arides (JARA) 14: 150–158
  44. Tamura K., Stecher G., Kumar S., 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. In: Molecular Biology and Evolution (F.U. Battistuzzi, ed.) 38: 3022–3027. https://doi.org/10.1093/molbev/msab120 DOI: https://doi.org/10.1093/molbev/msab120
  45. Vigne E., Bergdoll M., Guyader S., Fuchs M., 2004a. Population structure and genetic variability within isolates of Grapevine fanleaf virus from a naturally infected vineyard in France: evidence for mixed infection and recombination. Journal of General Virology 85: 2435–2445. https://doi.org/10.1099/vir.0.79904-0 DOI: https://doi.org/10.1099/vir.0.79904-0
  46. Vigne E., Komar V., Fuchs M., 2004b. Field Safety Assessment of Recombination in Transgenic Grapevines Expressing the Coat Protein Gene of Grapevine fanleaf virus. Transgenic Research 13: 165–179. https://doi.org/10.1023/B:TRAG.0000026075.79097.c9 DOI: https://doi.org/10.1023/B:TRAG.0000026075.79097.c9
  47. Vigne E., Marmonier A., Fuchs M., 2008. Multiple interspecies recombination events within RNA2 of Grapevine fanleaf virus and Arabis mosaic virus. Archives of Virology 153: 1771–1776. https://doi.org/10.1007/s00705-008-0182-y DOI: https://doi.org/10.1007/s00705-008-0182-y
  48. Vigne E., Garcia S., Komar V., Lemaire O., Hily J.M., 2018. Comparison of Serological and Molecular Methods With High-Throughput Sequencing for the Detection and Quantification of Grapevine Fanleaf Virus in Vineyard Samples. Frontiers in Microbiology 9: 2726. https://doi.org/10.3389/fmicb.2018.02726 DOI: https://doi.org/10.3389/fmicb.2018.02726
  49. Zhou J., Fan X., Dong Y., Zhang Z ping., Ren F., Hu G., 2015. Detection and genetic variation analysis of grapevine fanleaf virus (GFLV) isolates in China. Archives of Virology 160: 2661–2667. https://doi.org/10.1007/s00705-015-2566-0 DOI: https://doi.org/10.1007/s00705-015-2566-0
  50. Zhou J., Fan X., Dong Y., Zhang Z., Ren F., Hu G., Li Z., 2017. Complete nucleotide sequence of a new variant of grapevine fanleaf virus from northeastern China. Archives of Virology 162: 577–579. https://doi.org/10.1007/s00705-016-3101-7 DOI: https://doi.org/10.1007/s00705-016-3101-7