Published 2025-09-12
Keywords
- DAS-ELISA,
- High Throughput Sequencing,
- RT-PCR,
- Grapevine,
- GFLV
How to Cite
Copyright (c) 2025 Nour Elhouda LAIDOUDI, Osamah ALISAWI, Bilal YAHIAOUI, Anfel DJENAOUI, Imane MAHDID, Adel BACHIR, Francesca DE LUCA, Elena FANELLI, Angelantonio MINAFRA, Naima MAHFOUDHI, Arezki LEHAD

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Prevalence and genetic diversity of Grapevine fanleaf virus (Nepovirus foliumflabelli, GFLV) were determined in vineyards and grape varieties in Algeria. Samples (414) from different cultivars and viticulture areas were screened using DAS-ELISA and partially confirmed by RT-PCR, revealing 21% infection incidence. In Ahmer Bou Amer the greatest incidence of infection was recorded (61%). Some vines, confirmed to be GFLV-infected, had characteristic symptoms of leaf yellowing, chloroses, and mosaic patterns, reducing vine vigour and fruit quality. High throughput sequencing and bioinformatics analyses of a single GFLV-infected accession obtained a nearly complete grapevine fanleaf virus RNA1 consensus sequence of 5,979 nt, and an RNA2 with complete consensus sequence of 3,711 nt. Grapevine yellow speckle viroid, Hop stunt viroid and other viruses were also identified in the ‘background’ virome. Phylogenetic analyses of an amplified fragment of the GFLV coat protein gene from some of the accessions indicated close genetic relationships between Algerian and Russian/United States of America GFLV isolates, suggesting potential shared origins or transmission pathways. These results emphasize the need for implementing strict phytosanitary measures (e.g. use of virus-free planting material) to mitigate GFLV spread and its detrimental effects on grapevine production in Algeria.
Downloads
References
- Adams AN., Clark MF., 1977. Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. Journal of General Virology 34: 475–483. https://doi.org/10.1099/0022-1317-34-3-475 DOI: https://doi.org/10.1099/0022-1317-34-3-475
- Adams I.P., Glover R.H., Monger W.A., Mumford R., Jackeviciene E., … Boonham N., 2009. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Molecular Plant Pathology 10: 537–545. https://doi.org/10.1111/j.1364-3703.2009.00545.x DOI: https://doi.org/10.1111/j.1364-3703.2009.00545.x
- Al Rwahnih M., Daubert S., Golino D., Islas C., Rowhani A., 2015. Comparison of Next-Generation Sequencing Versus Biological Indexing for the Optimal Detection of Viral Pathogens in Grapevine. Phytopathology 105: 758–763. https://doi.org/10.1094/PHYTO-06-14-0165-R DOI: https://doi.org/10.1094/PHYTO-06-14-0165-R
- Andret-Link P., Laporte C., Valat L, Ritzenthaler C., Demangeat G., Vigne E., … Fuchs M., 2004. Grapevine fanleaf virus: still a major threat to the grapevine industry. Journal of Plant Pathology 86: 183–195.
- Barba M., Czosnek H., Hadidi A., 2014. Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses 6: 106–136. https://doi.org/10.3390/v6010106 DOI: https://doi.org/10.3390/v6010106
- Brister J.R., Ako-adjei D., Bao Y., Blinkova O., 2015. NCBI Viral Genomes Resource. Nucleic Acids Research 43: D571–D577. https://doi.org/10.1093/nar/gku1207 DOI: https://doi.org/10.1093/nar/gku1207
- Cigsar I., Digiaro M., Gokalp K., Ghanem-Sabanadzovic NA., De Stradis A., ...Martelli G.P., 2003. Grapevine deformation virus, a novel nepovirus from Turkey. Journal of Plant Pathology 85: 183–191.
- Demangeat G., 2007. Transmission des Nepovirus par les nématodes Longidoridae. Virologie 11: 14. https://doi.org/10.1684/vir.2007.0102
- Di Serio F., Izadpanah K., Hajizadeh M., Navarro B., 2017. Viroids Infecting the Grapevine. In: Grapevine Viruses: Molecular Biology, Diagnostics and Management. (Meng B., Martelli G.P., Golino D.A., Fuchs M. ed.). Cham, Switzerland, Springer International Publishing AG, pp 373–392. DOI: https://doi.org/10.1007/978-3-319-57706-7_19
- Digiaro M., Elbeaino T., Martelli G.P., 2017. Grapevine fanleaf virus and Other Old World Nepoviruses. In: Grapevine Viruses: Molecular Biology, Diagnostics and Management. (Meng B., Martelli G.P., Golino D.A., Fuchs M. ed.). Cham, Switzerland, Springer International Publishing AG, pp 47–82. DOI: https://doi.org/10.1007/978-3-319-57706-7_3
- El Sayed T., Saker K., El Shorbagy A., Mandour A., Alajouz M., Soliman A., 2023. Characterization and Elimination of Grapevine fanleaf virus Using Thermotherapy in Combination with Meristem Tip Culture. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology 15: 101–117. https://doi.org/10.21608/eajbsc.2023.312619 DOI: https://doi.org/10.21608/eajbsc.2023.312619
- Elbeaino T., Kiyi H., Boutarfa R., Minafra A., Martelli G.P., Digiaro M., 2014. Phylogenetic and recombination analysis of the homing protein domain of grapevine fanleaf virus (GFLV) isolates associated with ‘yellow mosaic’ and ‘infectious malformation’ syndromes in grapevine. Archives of Virology 159: 2757–2764. https://doi.org/10.1007/s00705-014-2138-8 DOI: https://doi.org/10.1007/s00705-014-2138-8
- Erilmez S., Kaya A., 2016. Comparison of DAS-ELISA and RT-PCR methods for the diagnosis of grapevine viruses. Bitki Koruma Bülteni 56: 297–302.
- Everaert E.A., Viaene N., Quataert P., Haegeman A., De Jonghe K., 2024. Towards Improved Nepovirus Detection and Identification in Xiphinema Nematodes. PhytoFrontiersTM PHYTOFR-03-24-0018-R. https://doi.org/10.1094/PHYTOFR-03-24-0018-R DOI: https://doi.org/10.1094/PHYTOFR-03-24-0018-R
- Fattouch S., Acheche H., M’hirsi S., Mellouli L., Bejar S., Marrakchi M., Marzouki N., 2005 RT-PCR–RFLP for genetic diversity analysis of Tunisian Grapevine fanleaf virus isolates in their natural host plants. Journal of Virological Methods 127: 126–132. https://doi.org/10.1016/j.jviromet.2005.03.008 DOI: https://doi.org/10.1016/j.jviromet.2005.03.008
- FAOSTAT, 2022. FAOSTAT: Crops and livestock products – Grapevines. Food and Agriculture Organization of the United Nations. Available at https://www.fao.org/faostat/en/#data/QCL/visualize. Accessed 12 Aug 2024
- Fuchs M., 2024. Grapevine viruses: Did you say more than a hundred? Journal of Plant Pathology 107: 217–227. https://doi.org/10.1007/s42161-024-01819-5 DOI: https://doi.org/10.1007/s42161-024-01819-5
- Fuchs M., Schmitt-Keichinger C., Sanfaçon H., 2017. A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors. Advances in Virus Research 67: 61–105. DOI: https://doi.org/10.1016/bs.aivir.2016.08.009
- Gambino G., Perrone I., Gribaudo I., 2008. A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis 19: 520–525. https://doi.org/10.1002/pca.1078 DOI: https://doi.org/10.1002/pca.1078
- Gholampour Z., Zakiaghl M., Asquini E., Moser M., Gualandri V., Mehrvar M., Si-Ammour A., 2024. Application of High-Throughput Sequencing for Comprehensive Virome Profiling in Grapevines Shows Yellows in Iran. Viruses 16: 204. https://doi.org/10.3390/v16020204 DOI: https://doi.org/10.3390/v16020204
- Hily J-M., Candresse T., Garcia S., Vigne E., Tannière M., …Lemaire O., 2018. High-Throughput Sequencing and the Viromic Study of Grapevine Leaves: From the Detection of Grapevine-Infecting Viruses to the Description of a New Environmental Tymovirales Member. Frontiers in Microbiology 9: 1782. https://doi.org/10.3389/fmicb.2018.01782 DOI: https://doi.org/10.3389/fmicb.2018.01782
- Kaponi M., Kyriakopoulou P.E., Hadidi A., 2024. Viroids of the Mediterranean Basin. Viruses 16:612. https://doi.org/10.3390/v16040612 DOI: https://doi.org/10.3390/v16040612
- Kearse M., Sturrock S., Meintjes P., 2012a The Geneious 6.0.3 Read Mapper. Auckland, New Zealand: Biomatters, Ltd.
- Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Drummond A., 2012b. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 DOI: https://doi.org/10.1093/bioinformatics/bts199
- Khaffajah B., Alisawi O., Al Fadhl F., 2022. Genome sequencing of eggplant reveals Eggplant mild leaf mottle virus existence with associated two endogenous viruses in diseased eggplant in Iraq. Archives of Phytopathology and Plant Protection 55: 1930–1943. https://doi.org/10.1080/03235408.2022.2123601 DOI: https://doi.org/10.1080/03235408.2022.2123601
- Krebelj AJ., Čepin U., Ravnikar M., Novak M.P., 2015. Spatio-temporal distribution of Grapevine fanleaf virus (GFLV) in grapevine. European Journal of Plant Pathology 142: 159–171. https://doi.org/10.1007/s10658-015-0600-4 DOI: https://doi.org/10.1007/s10658-015-0600-4
- Kreuze J.F., Perez A., Untiveros M., Quispe D., Fuentes S., Barker I., Simon R., 2009. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis, discovery and sequencing of viruses. Virology 388: 1–7. https://doi.org/10.1016/j.virol.2009.03.024 DOI: https://doi.org/10.1016/j.virol.2009.03.024
- Kubina J., Hily J.M., Mustin P., Komar V., Garcia S., …Vigne E., 2022. Characterization of Grapevine Fanleaf Virus Isolates in ‘Chardonnay’ Vines Exhibiting Severe and Mild Symptoms in Two Vineyards. Viruses 14: 2303. https://doi.org/10.3390/v14102303 DOI: https://doi.org/10.3390/v14102303
- Liebenberg A., Freeborough M.J., Visser C.J., Bellstedt D.U., Burger J.T., 2009. Genetic variability within the coat protein gene of Grapevine fanleaf virus isolates from South Africa and the evaluation of RT-PCR, DAS-ELISA and ImmunoStrips as virus diagnostic assays. Virus Research 142: 28–35. https://doi.org/10.1016/j.virusres.2009.01.016 DOI: https://doi.org/10.1016/j.virusres.2009.01.016
- MacKenzie D.J., McLean M.A., Mukerji S., Green M., 1997. Improved RNA Extraction from Woody Plants for the Detection of Viral Pathogens by Reverse Transcription-Polymerase Chain Reaction. Plant Disease 81: 222–226. https://doi.org/10.1094/PDIS.1997.81.2.222 DOI: https://doi.org/10.1094/PDIS.1997.81.2.222
- Martelli G.P., 2014. Directory of virus and virus-like diseases of the grapevine and their agents. Journal of Plant Pathology 96(1) Suppl., 136 pp. DOI: https://doi.org/10.1002/9780470015902.a0000766.pub3
- Martin I.R., Vigne E., Velt A., Hily J-M., Garcia S., …Schmitt-Keichinger C., 2021. Severe Stunting Symptoms upon Nepovirus Infection Are Reminiscent of a Chronic Hypersensitive-like Response in a Perennial Woody Fruit Crop. Viruses 13: 2138. https://doi.org/10.3390/v13112138 DOI: https://doi.org/10.3390/v13112138
- Massart S., Olmos A., Jijakli H., Candresse T., 2014. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Research 188: 90–96. https://doi.org/10.1016/j.virusres.2014.03.029 DOI: https://doi.org/10.1016/j.virusres.2014.03.029
- Mekuria T.A., Gutha L.R., Martin R.R., Naidu R.A., 2009. Genome Diversity and Intra- and Interspecies Recombination Events in Grapevine fanleaf virus. Phytopathology® 99: 1394–1402. https://doi.org/10.1094/PHYTO-99-12-1394 DOI: https://doi.org/10.1094/PHYTO-99-12-1394
- Miljanić V., Rusjan D., Škvarč A., Chatelet P., Štajner N., 2022. Elimination of eight viruses and two viroids from preclonal candidates of six grapevine varieties (Vitis vinifera L.) through in vivo thermotherapy and in vitro meristem tip micrografting. Plants 11: 1064. https://doi.org/10.3390/plants11081064 DOI: https://doi.org/10.3390/plants11081064
- Mokili J.L., Rohwer F., Dutilh B.E., 2012. Metagenomics and future perspectives in virus discovery. Current Opinion in Virology 2: 63–77. https://doi.org/10.1016/j.coviro.2011.12.004 DOI: https://doi.org/10.1016/j.coviro.2011.12.004
- M’rabet Samaali B., Loulou A., MougouHamdane A., Kallel S., 2024. Acquisition and transmission of Grapevine fanleaf virus (GFLV) by Xiphinema index and Xiphinema italiae (Longidoridae). Journal of Helminthology 98: e26. https://doi.org/10.1017/S0022149X24000154 DOI: https://doi.org/10.1017/S0022149X24000154
- Panattoni A., Triolo E., 2010. Susceptibility of grapevine viruses to thermotherapy on in vitro collection of Kober 5BB. Scientia Horticulturae 125: 63–67. https://doi.org/10.1016/j.scienta.2010.03.001 DOI: https://doi.org/10.1016/j.scienta.2010.03.001
- Panno S., Caruso A.G., Bertacca S., Pisciotta A., Di Lorenzo R., … Davino S., 2021. Genetic structure and molecular variability of grapevine fanleaf virus in sicily. Agriculture 11(6): 496. https://doi.org/10.3390/agriculture11060496 DOI: https://doi.org/10.3390/agriculture11060496
- Porotikova E., Terehova U., Volodin V., Yurchenko E., Vinogradova S., 2021. Distribution and genetic diversity of grapevine viruses in Russia. Plants 10: 1080. https://doi.org/10.3390/plants10061080 DOI: https://doi.org/10.3390/plants10061080
- Sanfaçon H., Wellink J., Le Gall O., Karasev A., van der Vlugt R., Wetzel T., 2009. Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Archives of Virology 154: 899–907. https://doi.org/10.1007/s00705-009-0367-z DOI: https://doi.org/10.1007/s00705-009-0367-z
- Schmitt-Keichinger C., Hemmer C., Berthold F., Ritzenthaler C., 2017. Molecular, Cellular, and Structural Biology of Grapevine fanleaf virus. In: Grapevine Viruses: Molecular Biology, Diagnostics and Management. (Meng B., Martelli G.P., Golino D.A., Fuchs M. ed.). Cham, Switzerland, Springer International Publishing AG, pp. 83–107 DOI: https://doi.org/10.1007/978-3-319-57706-7_4
- Tahirine M., Louanchi M., Aitouada M., 2020. Actualisation à la révélation de deux virus responsables à la maladie du court noué de la vigne du genre Vitis dans la région Centre et Ouest de l’Algérie par voie sérologique et biochimique. Journal Algérien des Régions Arides (JARA) 14: 150–158
- Tamura K., Stecher G., Kumar S., 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. In: Molecular Biology and Evolution (F.U. Battistuzzi, ed.) 38: 3022–3027. https://doi.org/10.1093/molbev/msab120 DOI: https://doi.org/10.1093/molbev/msab120
- Vigne E., Bergdoll M., Guyader S., Fuchs M., 2004a. Population structure and genetic variability within isolates of Grapevine fanleaf virus from a naturally infected vineyard in France: evidence for mixed infection and recombination. Journal of General Virology 85: 2435–2445. https://doi.org/10.1099/vir.0.79904-0 DOI: https://doi.org/10.1099/vir.0.79904-0
- Vigne E., Komar V., Fuchs M., 2004b. Field Safety Assessment of Recombination in Transgenic Grapevines Expressing the Coat Protein Gene of Grapevine fanleaf virus. Transgenic Research 13: 165–179. https://doi.org/10.1023/B:TRAG.0000026075.79097.c9 DOI: https://doi.org/10.1023/B:TRAG.0000026075.79097.c9
- Vigne E., Marmonier A., Fuchs M., 2008. Multiple interspecies recombination events within RNA2 of Grapevine fanleaf virus and Arabis mosaic virus. Archives of Virology 153: 1771–1776. https://doi.org/10.1007/s00705-008-0182-y DOI: https://doi.org/10.1007/s00705-008-0182-y
- Vigne E., Garcia S., Komar V., Lemaire O., Hily J.M., 2018. Comparison of Serological and Molecular Methods With High-Throughput Sequencing for the Detection and Quantification of Grapevine Fanleaf Virus in Vineyard Samples. Frontiers in Microbiology 9: 2726. https://doi.org/10.3389/fmicb.2018.02726 DOI: https://doi.org/10.3389/fmicb.2018.02726
- Zhou J., Fan X., Dong Y., Zhang Z ping., Ren F., Hu G., 2015. Detection and genetic variation analysis of grapevine fanleaf virus (GFLV) isolates in China. Archives of Virology 160: 2661–2667. https://doi.org/10.1007/s00705-015-2566-0 DOI: https://doi.org/10.1007/s00705-015-2566-0
- Zhou J., Fan X., Dong Y., Zhang Z., Ren F., Hu G., Li Z., 2017. Complete nucleotide sequence of a new variant of grapevine fanleaf virus from northeastern China. Archives of Virology 162: 577–579. https://doi.org/10.1007/s00705-016-3101-7 DOI: https://doi.org/10.1007/s00705-016-3101-7
