Vol. 62 No. 3 (2023)
Articles

Trichoderma in the Maltese Islands

Marco IANNACCONE
University of Malta, Department of Biology
Stefania SOMMA
Institute of Sciences of Food Production, National Research Council
Claudio ALTOMARE
Institute of Sciences of Food Production, National Research Council
Joseph A. BUHAGIAR
University of Malta, Department of Biology
Categories

Published 2023-12-30

Keywords

  • ITS,
  • tef1

How to Cite

[1]
M. IANNACCONE, S. SOMMA, C. ALTOMARE, and J. A. BUHAGIAR, “Trichoderma in the Maltese Islands”, Phytopathol. Mediterr., vol. 62, no. 3, pp. 361–370, Dec. 2023.

Funding data

  • Interreg
    Grant numbers SiMaSeed project through the INTERREG V-A Italy-Malta Programme
  • Università ta' Malta
    Grant numbers Maltese mYCo-diversity: unexplored sOurce of BIOactive compouNdS.

Abstract

This study assessed presence of Trichoderma spp. in the Maltese Islands. Isolates were identified using dichotomous keys and DNA barcoding. Ten distinct isolates were obtained from different soils and other substrates, and were identified as T. virens, T. citrinoviride, T. gamsii, and, in the former T. harzianum species complex, T. breve, T. afroharzianum and T. atrobrunneum. Five out of these six fungi are reported for the first time in the Maltese Islands, and T. brevis is reported for the first time in Europe.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., 1990. Basic Local Alignment Search Tool. Journal of Molecular Biology 215.3: 403-410. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Atanasova L., Druzhinina I.S., Jaklitsch W.M., 2013. Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In: Trichoderma: Biology and Applications, CABI, 10–42, Wallingford, UK. DOI: https://doi.org/10.1079/9781780642475.0010
  3. Bissett J., Gams W., Jaklitsch W., Samuels G.J., 2015. Accepted Trichoderma names in the year 2015. IMA Fungus 6: 263–295. https://doi.org/10.5598/imafungus.2015.06.02.02 DOI: https://doi.org/10.5598/imafungus.2015.06.02.02
  4. Cai F., Druzhinina I.S., 2021. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity 107: 1–69. https://doi.org/10.1007/s13225-020-00464-4 DOI: https://doi.org/10.1007/s13225-020-00464-4
  5. Chaverri P., Castlebury L.A., Samuels G.J., Geiser D.M., 2003a. Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Molecular Phylogenetics and Evolution 27: 302–313. https://doi.org/10.1016/S1055-7903(02)00400-1 DOI: https://doi.org/10.1016/S1055-7903(02)00400-1
  6. Chaverri P., Samuels G.J., 2003b. Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Studies in Mycology 48: 1–116.
  7. Chaverri P., Branco-Rocha F., Jaklitsch W., Gazis R., Degenkolb T., Samuels G.J., 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107: 558–590. https://doi.org/10.3852/14-147 DOI: https://doi.org/10.3852/14-147
  8. Chen K., Zhuang W.-Y., 2017. Discovery from a large-scaled survey of Trichoderma in soil of China. Scientific Reports 7: 9090. https://doi.org/10.1038/s41598-017-07807-3 DOI: https://doi.org/10.1038/s41598-017-07807-3
  9. del Carmen H. Rodríguez M., Evans H.C., de Abreu L.M., de Macedo D.M., Ndacnou M.K., Barreto R.W., 2021. New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Scientific Reports 11: 5671. https://doi.org/10.1038/s41598-021-84111-1 DOI: https://doi.org/10.1038/s41598-021-84111-1
  10. Druzhinina I., Kubicek C.P., 2005. Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? Journal of Zhejiang University-SCIENCE B 6: 100–112. https://doi.org/10.1631/jzus.2005.B0100 DOI: https://doi.org/10.1631/jzus.2005.B0100
  11. Druzhinina I.S., Kopchinskiy A.G., Kubicek C.P., 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47: 55–64. https://doi.org/10.1007/S10267-006-0279-7 DOI: https://doi.org/10.1007/S10267-006-0279-7
  12. Druzhinina I.S., Kubicek C.P., Komon-Zelazowska M., Belayneh Mulaw T., Bissett J., 2010. The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evolutionary Biology 10: 94. https://doi.org/10.1186/1471-2148-10-94 DOI: https://doi.org/10.1186/1471-2148-10-94
  13. Druzhinina I.S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B.A., Kenerley C.M., … Kubicek C.P., 2011. Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology 9: 749–759. https://doi.org/10.1038/nrmicro2637 DOI: https://doi.org/10.1038/nrmicro2637
  14. Elad Y., Chet I., Henis Y., 1981. A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9: 59–67. https://doi.org/10.1007/BF03158330 DOI: https://doi.org/10.1007/BF03158330
  15. Evans H.C., Holmes K.A., Thomas S.E., 2003. Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Progress 2: 149–160. https://doi.org/10.1007/s11557-006-0053-4 DOI: https://doi.org/10.1007/s11557-006-0053-4
  16. Galdies C., 2011. The Climate of Malta: statistics, trends and analysis 1951-2010 – Valletta: National Statistics Office, 2011 viii, 45p. Available at: https://nso.gov.mt/wp-content/uploads/The_Climate_of_Malta.pdf
  17. Gams W., Bissett J., 1998. Morphology and identification of Trichoderma. In: Trichoderma and Gliocladium (G.E. Harmann, C.P. Kubicek, ed.). Taylor and Francis ed., London, England, 3–34.
  18. Gazis R., Chaverri P., 2010. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecology 3: 240–254. https://doi.org/10.1016/j.funeco.2009.12.001 DOI: https://doi.org/10.1016/j.funeco.2009.12.001
  19. Guswenrivo I., Nagao H., Lee C.Y., 2018. The Diversity of Soil Fungus in and Around Termite Mounds of Globitermes sulphureus (Haviland) (Blattodea: Termitidae) and Response of Subterranean Termite to Fungi. In: Sustainable Future for Human Security (B. McLellan, ed.), Singapore, Springer Singapore, Japan 37–52. DOI: https://doi.org/10.1007/978-981-10-5430-3_4
  20. Hatvani L., Homa M., Chenthamara K., Cai F., Kocsubé S., … Kredics L., 2019. Agricultural systems as potential sources of emerging human mycoses caused by Trichoderma: a successful, common phylotype of Trichoderma longibrachiatum in the frontline. FEMS Microbiology Letters 366: fnz246. https://doi.org/10.1093/femsle/fnz246 DOI: https://doi.org/10.1093/femsle/fnz246
  21. Hatvani L., Vágvölgyi C., Druzhinina I., 2014. Chapter 3 - DNA Barcode for Species Identification in Trichoderma. In: Biotechnology and Biology of Trichoderma, Elsevier, 41–55. https://doi.org/10.1016/B978-0-444-59576-8.01001-8 DOI: https://doi.org/10.1016/B978-0-444-59576-8.00003-5
  22. Hoyos-Carvajal L., Orduz S., Bissett J., 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology 46: 615–631. https://doi.org/10.1016/j.fgb.2009.04.006 DOI: https://doi.org/10.1016/j.fgb.2009.04.006
  23. Jaklitsch W.M., 2009. European species of Hypocrea Part I. The green-spored species. Studies in Mycology 63: 1–91. https://doi.org/10.3114/sim.2009.63.01 DOI: https://doi.org/10.3114/sim.2009.63.01
  24. Jaklitsch W.M., Samuels G.J., Dodd S.L., Lu B.-S., Druzhinina I.S., 2006. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Studies in Mycology 56: 135–177. https://doi.org/10.3114/sim.2006.56.04 DOI: https://doi.org/10.3114/sim.2006.56.04
  25. Jaklitsch W.M., 2011. European species of Hypocrea part II: species with hyaline ascospores. Fungal Diversity 48: 1–250. https://doi.org/10.1007/s13225-011-0088-y DOI: https://doi.org/10.1007/s13225-011-0088-y
  26. Jaklitsch W.M., Voglmayr H., 2015. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Studies in Mycology 80: 1–87. https://doi.org/10.1016/j.simyco.2014.11.001 DOI: https://doi.org/10.1016/j.simyco.2014.11.001
  27. Kubicek C.P., Komon-Zelazowska M., Druzhinina I.S., 2008. Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. Journal of Zhejiang University SCIENCE B 9: 753–763. https://doi.org/10.1631/jzus.B0860015 DOI: https://doi.org/10.1631/jzus.B0860015
  28. Liu Y.J., Whelen S., Hall B.D., 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092 DOI: https://doi.org/10.1093/oxfordjournals.molbev.a026092
  29. Marik T., Tyagi C., Racić G., Rakk D., Szekeres A., Kredics L., 2018. New 19-Residue Peptaibols from Trichoderma Clade Viride. Microorganisms 6: 85. https://doi.org/10.3390/microorganisms6030085 DOI: https://doi.org/10.3390/microorganisms6030085
  30. Mifsud S., 2022. An Annotated Checklist of Macrofungi Occurring in Gozo. MSc Thesis, University of Malta, Msida, Malta.
  31. Persoon C.H., 1794. Disposita methodica fungorum. Römers Neues Mag Bot, 1 (1794), pp. 81-128.
  32. Porta-Puglia A., Mifsud D., 2006. Fungal and fungal-like plant pathogens of the Maltese Islands. Petria 16: 163–256.
  33. Rifai A., 1969. A revision of the genus Trichoderma. Mycological Papers 116: 1–56.
  34. Saccardo P.A., 1912. Fungi ex Insula Melita (Malta) lecti a Doct. A. Caruana-Gatto et Doct. G. Borg. Bullettino Società Botanica Italiana 1912 19: 314–326.
  35. Saccardo P.A., 1914. Fungi ex Insula Melita (Malta) lecti a Doct. A. Caruana-Gatto et Doct. G. Borg. Nuovo Giornale Botanico Italiano 21: 110–126.
  36. Saccardo P.A., 1915. Fungi ex Insula Melita (Malta) lecti a Doct. A. Caruana-Gatto et Doct. G. Borg. Nuovo Giornale Botanico Italiano 22: 24–76.
  37. Sallenave C., Pouchus Y.F., 1999. Bioaccumulation of mycotoxins by shellfish: Contamination of mussels by metabolites of a Trichoderma koningii strain isolated in the marine environment. Toxicon 37(1): 77-83. https://doi.org/10.1016/s0041-0101(98)00135-4 DOI: https://doi.org/10.1016/S0041-0101(98)00135-4
  38. Sallenave-Namont C., Pouchus Y.F., 2000. Toxigenic saprophytic fungi in marine shellfish farming areas. Mycopathologia 149(1): 21-5. https://doi.org/10.1023/A:1007259810190 DOI: https://doi.org/10.1023/A:1007259810190
  39. Samuels G.J., 2006. Trichoderma: Systematics, the Sexual State, and Ecology. Phytopathology 96: 195–206. https://doi.org/10.1094/PHYTO-96-0195 DOI: https://doi.org/10.1094/PHYTO-96-0195
  40. Samuels G.J., Ismaiel A., Mulaw T.B., Szakacs G., Druzhinina I.S., … Jaklitsch W.M., 2012. The Longibrachiatum Clade of Trichoderma: a revision with new species. Fungal Diversity 55: 77–108. https://doi.org/10.1007/s13225-012-0152-2 DOI: https://doi.org/10.1007/s13225-012-0152-2
  41. Schembri P.J., 1996. The Maltese Islands: climate, vegetation and landscape. GeoJournal 41.2: 115–125.
  42. Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., … Schindel D., 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109: 6241–6246. https://doi.org/10.1073/pnas.1117018109 DOI: https://doi.org/10.1073/pnas.1207508109
  43. Smith V.L., Wilcox W.F., Harman G.E., 1990. Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp. Phytopathology 80: 880–885. DOI: https://doi.org/10.1094/Phyto-80-880
  44. Stielow J.B., Lévesque C.A., Seifert K.A., Meyer W., Irinyi L., Robert V., 2015. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia - Molecular Phylogeny and Evolution of Fungi 35: 242–263. https://doi.org/10.3767/003158515X689135 DOI: https://doi.org/10.3767/003158515X689135
  45. Stocco M., Mónaco C., Cordo C., 2010. A comparison of preservation methods for Trichoderma harzianum cultures. Revista Iberoamericana de Micología 27: 213. https://doi.org/10.1016/j.riam.2010.06.001 DOI: https://doi.org/10.1016/j.riam.2010.06.001
  46. Tamura K., Stecher G., Kumar S., 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38 I7 3022–3027, https://doi.org/10.1093/molbev/msab120 DOI: https://doi.org/10.1093/molbev/msab120
  47. White T.J., Bruns T., Lee S., Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols, a Guide to Methods and Applications., Academic Press, New York, 315–322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  48. Yamada T., Fujii A., Kikuchi T., 2019. New Diterpenes with a Fused 6-5-6-6 Ring System Isolated from the Marine Sponge-Derived Fungus Trichoderma harzianum. Marine Drugs 17: 480. https://doi.org/10.3390/md17080480 DOI: https://doi.org/10.3390/md17080480
  49. Yoder J.A., Glenn B.D., Benoit J.B., Zettler L.W., 2008. The giant Madagascar hissing-cockroach (Gromphadorhina portentosa) as a source of antagonistic moulds: concerns arising from its use in a public setting. Mycoses 51: 95–98. https://doi.org/10.1111/j.1439-0507.2007.01470.x DOI: https://doi.org/10.1111/j.1439-0507.2007.01470.x