Published 2020-08-12
Keywords
- Young vine decline,
- grapevine trunk diseases,
- Petri disease,
- black foot
How to Cite
Funding data
-
Ministero dello Sviluppo Economico
Grant numbers 2017-NAZ-0228 – CUP B78117000260008
Abstract
After the first report of grapevine decline caused by Botryosphaeriaceae in Sicily in 2007, epidemiological studies carried out in mature vineyards until 2011 confirmed the widespread occurrence of “Botryosphaeria dieback” and the “Esca complex” disease. Dieback symptoms were also recently observed in two young vineyards in Partanna and Castellammare del Golfo in western Sicily (Trapani province). Declining vines were inspected for grapevine trunk disease (GTD) symptoms, and were uprooted and submitted for analyses. Fungal isolates were collected and identified using culturing and molecular analyses. One isolate per identified species was inoculated to three grapevine shoots to evaluate pathogenicity and fulfil Koch’s postulates. Several GTD Botryosphaeriaceae pathogens in the genera Cadophora, Ilyonectria, Neonectria, Phaeoacremonium and Phaeomoniella were isolated from the symptomatic young vines. Artificial inoculation confirmed the pathogenicity of these fungi. In addition, virulence variability was observed among the isolates, with P. chlamydospora causing the largest lesions. The different species were associated with specific symptoms and/or host vine parts, especially in the roots and around the grafting areas. Several fungi associated with Petri disease and black foot were shown to be responsible of young vine decline.
Downloads
Metrics
References
Agustí-Brisach C., Armengol J., 2013. Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea 52(2): 245–261. https://doi.org/10.14601/Phytopathol_Mediterr-12662
Alaniz S., León M., Vicent A., García-Jiménez J., Abad-Campos P., Armengol J., 2007. Characterization of Cylindrocarpon species associated with black foot disease of grapevine in Spain. Plant Disease 91: 1187–1193
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., … Lipman, D. J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17): 3389–3402. https://doi.org/10.1093/nar/25.17.3389
Armengol J., 2014. Fungal trunk pathogens in grapevine nurseries: current status and future. In: COST Action FA1303 Sustainable control of Grapevine trunk diseases Workshop. Warsaw. Retrieved from http://managtd.eu/images/uploads/content/125/Armengol J_Grapevine nurseries.pdf
Aroca Á., Gramaje D., Armengol J., García-Jiménez, J., Raposo, R., 2010. Evaluation of the grapevine nursery propagation process as a source of Phaeoacremonium spp. and Phaeomoniella chlamydospora and occurrence of trunk disease pathogens in rootstock mother vines in Spain. European Journal of Plant Pathology 126(2): 165–174. https://doi.org/10.1007/s10658-009-9530-3
Burruano S., Mondello V., Conigliaro G., Alfonzo A., Spagnolo A., Mugnai L., 2008. Grapevine decline in Italy caused by Lasiodiplodia theobromae. Phytopathologia Mediterranea 47(2): 132–136.
Burruano S., Alfonzo A., Conigliaro G., Mondello V., Torta L., 2010. Il mal dell’esca della vite in Sicilia. In: Il Mal dell’Esca della Vite Interventi di ricerca e sperimentazione per il contenimento della malattia-Progetto MESVIT. Ed. ARSIA Regione Toscana: 171-177
Cabral A.C.G.P., 2012 - New insights in Ilyonectria black foot disease of grapevine. PhD Thesis, Lisbon: ISA, 2012 http://hdl.handle.net/20.500.11755/cf66c9a9-46e1-4bef-881f-467a9fc08d42
Carlucci A., Raimondo M. L., Cibelli F., Phillips A. J. L., Lops F., 2013. Pleurostomophora richardsiae, Neofusicoccum parvum and Phaeoacremonium aleophilum associated with a decline of olives in southern Italy. Phytopathologia Mediterranea 52(3): 517–527.
Carlucci A., Cibelli F., Lops F., Raimondo, M. L., 2015. Characterization of Botryosphaeriaceae Species as Causal Agents of Trunk Diseases on Grapevines. Plant Disease 99(12): 1678–1688. https://doi.org/10.1094/PDIS-03-15-0286-RE
Carlucci A., Lops F., Mostert L., Halleen F., Raimondo M., 2017. Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy, Phytopathologia Mediterranea 56(1): 10-39
Cristinzio G., 1978. Gravi attacchi di Botryosphaeria obtusa su vite in provincia di Insernia. Informatore Fitopatologico 6: 21–23.
Fischer M., 2002. A new wood-decaying basidiomycete species associated with esca of grapevine: Fomitiporia mediterranea (Hymenochaetales). Mycological Progress 1(3): 315–324. https://doi.org/10.1007/s11557-006-0029-4
Fischer M., Peighami Ashnaei, S. 2019. Grapevine, Esca complex, and environment: the disease triangle. Phytopathologia Mediterranea 58(1): 17-37. doi:10.13128/Phyto-pathol_Mediterr-25086
Gardes M., Bruns, T. D., 1993. ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Molecular Ecology 2(2): 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Giménez-Jaime A., Aroca A., Raposo R., García-Jiménez J., Armengol J., 2006. Occurrence of fungal pathogens associated with grapevine nurseries and the decline of young vines in Spain. Journal of Phytopathology 154: 598–602.
Gramaje D., Muñoz, R. M., Lerma M. L., García-Jiménez, J., Armengol, J., 2009. Fungal grapevine trunk pathogens associated with Syrah decline in Spain. Phytopathologia Mediterranea 48 (3): 396–402. https://doi.org/10.14601/Phytopathol_Mediterr-2934
Gramaje D., Alaniz S., Abad-Campos P., García-Jiménez J., Armengol, J., 2010. Effect of hot-water treatments in vitro on conidial germination and mycelial growth of grapevine trunk pathogens. Annals of Applied Biology 156(2): 231–241. https://doi.org/10.1111/j.1744-7348.2009.00382.x
Gramaje, D., Armengol, J. 2011a. Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Disease 95 (9): 1040–1055. https://doi.org/10.1094/PDIS-01-11-0025
Gramaje D., Mostert L., Armengol J., 2011b. Characterization of Cadophora luteo-olivacea and C. melinii isolates obtained from grapevines and environmental samples from grapevine nurseries in Spain. Phytopathologia Mediterranea 50 (S): 112−126
Gramaje D., Urbez-Torres J. R., Sosnowski M. R., 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease 102(1): 12–39. https://doi.org/10.1094/PDIS-04-17-0512-FE
Granata, G., Refatti E., 1981. Decline and death of young grapevines by infection of Phoma glomerata on the rootstock. Vitis 20 (8): 341–346.
Grasso S., 1984. Infezioni di Fusarium oxysporum e di Cylindrocarpon destructans associate a una moria di giovani piante di vite in Sicilia. Informatore Fitopatologico 1: 59–63.
Grasso S., Magnano Di San Lio G., 1975. Infezioni di Cylindrocarpon obtusisporum su piante di vite in Sicilia. Vitis 14: 38‒39.
Halleen F., P. W. Crous, Petrini O., 2003. Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines. Australasian Plant Pathology 32: 47–52 https://doi.org/10.1071/AP02062
Halleen, F., Schroers H. J., Groenewald J. Z., & Crous P. W., 2004. Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp.). Studies in Mycology 50(2): 431–455.
Halleen F., Mostert L., and P.W. Crous. 2007. Pathogenicity testing of lesser-known vascular fungi of grapevines. Australasian Plant Pathology 36: 277-285.
Halleen F., Fourie P. H., 2016. An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. South African Journal of Enology and Viticulture 37(2): 104–114. https://doi.org/10.21548/37-2-825
Mondello V., Lo Piccolo S., Conigliaro G., Alfonzo A., Torta, L., Burruano S., 2013. First report of Neofusiccoccum vitifusiforme and presence of other Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevine in Sicily (Italy). Phytopathologia Mediterranea 52(2): 388–396.
Mondello V., Songy A., Battiston E., Pinto C., Coppin C., … Fontaine F., 2018a. Grapevine trunk diseases: a review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Disease 102: 1189–1217.
Mondello V., Larignon P., Armengol J., Kortekamp A., Vaczy K., …, Fontaine F., 2018b. Management of grapevine trunk diseases: knowledge transfer, current strategies and innovative strategies adopted in Europe. Phytopathologia Mediterranea 57(3): 369-383 DOI: https://doi.org/10.14601/Phytopathol_Mediterr-23942
Mondello V., Spagnolo A., Larignon P., Clément C., Fontaine F., 2019. Phytoprotection potential of Fusarium proliferatum for control of Botryosphaeria dieback pathogens in grapevine. Phytopathologia Mediterranea 58(2): 293-306. doi: 10.14601/ Phytopathol_Mediter-10617
O’Donnell K., Cigelnik E., Nirenberg H.I., 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465‒493
Petit E., Gubler W. D., 2005. Characterization of Cylindrocarpon species, the cause of Black Foot disease of grapevine in California. Plant Disease 89(10): 1051–1059. https://doi.org/10.1094/PD-89-1051
Pintos C., Redondo V., Costas D., Aguín O., Mansilla P., 2018. Fungi associated with grapevine trunk diseases in nursery-produced Vitis vinifera plants. Phytopathologia Mediterranea 57 (3): 407−424
Raimondo M. L., Lops F., Carlucci A., 2014. Phaeoacremonium italicum sp. nov., associated with esca of grapevine in southern Italy. Mycologia 106(6): 1119–1126. https://doi.org/10.3852/14-080
Réblová M., Jaklitsch W. M., Réblová K., Štěpánek V., 2015. Phylogenetic Reconstruction of the Calosphaeriales and Togniniales using five genes and predicted RNA secondary structures of ITS, and Flabellascus tenuirostris gen. et sp. nov. PLOS ONE, 10(12), e0144616. Retrieved from https://doi.org/10.1371/journal.pone.0144616
Rego C., Oliveira H., Carvalho A., Phillips, A., 2000. Involvement of Phaeoacremonium spp. and Cylindrocarpon destructans with grapevine decline in Portugal. Phytopathologia Mediterranea 39(1): 76-79.
Rego C., Nascimento T., Cabral A., Oliveira H., 2006. Fungi associated with young vine decline in Portugal: results of nine years surveys. Integrated Protection in Viticulture IOBC/wprs Bulletin Vol. 29(11), 2006 pp. 123-126 123;
Rego, C., Nascimento, T., Cabral, A., Silva, M. J., Oliveira H., 2009. Control of grapevine wood fungi in commercial nurseries. Phytopathologia Mediterranea 48(1): 128–135.
Reis P., Pierron R., Larignon P., Lecomte P., Abou-Mansour E., Farine S., … Fontaine F., 2019. Vitis methods to understand and develop strategies for diagnosis and sustainable control of Grapevine Trunk Diseases. Phytopathology 109(6): 916-931
Rovesti L., A. Montermini, 1978. A grapevine decline caused by Sphaeropsis malorum widespread in the province of Reggio-Emilia. Informatore Fitopatologico 37: 59–61.
Sidoti A., Buonocore E., Serges T., Mugnai, L., 2000. Decline of young grapevines associated with Phaeoacremonium chlamydosporum in Sicily (Italy). Phytopathologia Mediterranea 39(1): 87–91. https://doi.org/10.14601/Phytopathol_Mediterr-1533
Smart R., Mugnai L., Lane C., 2012. International viticultural consultant’s view of grapevine trunk diseases and their impact on clients. Phytopathologia Mediterranea 51: 433–434
Spagnolo A., Mondello V., Larignon P., Villaume S., Rabenoelina F., …, Fontaine F. 2017. Defense responses in grapevine (cv. Mourvèdre) after inoculation with the Botryosphaeria dieback pathogens Neofusicoccum parvum and Diplodia seriata and their relationship with flowering. Int. J. Mol. Sci. 18:393. http://doi.org/10.3390/ijms18020393
Úrbez-Torres J. R., Haag P., Bowen P., Lowery T., O’Gorman D. T., 2015. Development of a DNA macroarray for the detection and identification of fungal pathogens causing decline of young grapevines. Phytopathology 105:1373-1388
Waite H., Whitelaw-Weckert M., Torley P., 2015. Grapevine propagation: principles and methods for the production of high-quality grapevine planting material. New Zealand Journal of Crop and Horticultural Science 43(2): 144–161. https://doi.org/10.1080/01140671.2014.978340