The most informative loci to identify trunk disease pathogens associated with grapevine and perennial fruit and nut crops
Published 2025-12-30
Keywords
- Fungal Taxonomy,
- multi-locus phylogeny,
- molecular identification,
- pathogen diagnosis
How to Cite
Copyright (c) 2025 David GRAMAJE, Lizel MOSTERT, Florent P. TROUILLAS, Jose Ramon URBEZ TORRES, Artur ALVES

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação para a Ciência e a Tecnologia
Grant numbers UID/50006 + LA/P/0094/2020
Abstract
Trunk disease (TD) fungi are taxonomically diverse, and accurate species delimitation relies on multilocus phylogenetic analyses. However, the loci commonly employed vary among fungal groups, leading to inconsistencies in species recognition. This paper provides a comparative overview of the most informative genetic loci for species identification within the main families associated with TDs, including Botryosphaeriaceae, Cytosporaceae, Diaporthaceae, Diatrypaceae, Phaeomoniellaceae, Togniniaceae, Nectriaceae (Ascomycota), and Hymenochaetales (Basidiomycota). The internal transcribed spacer region (ITS) remains the universal primary barcode, but its discriminatory power is often limited. The most informative loci [translation elongation factor 1-α (tef1), β-tubulin (tub2), actin (act1), calmodulin (cal), histone (his3), and the RNA polymerase II second largest subunit (rpb2)] are identified, and optimal locus combinations for each fungal group are identified. This synthesis will aid selection of the most appropriate loci for robust phylogenetic inference and accurate pathogen identification, thereby improving epidemiological and management studies of TDs.
Downloads
References
- Alves A., Crous P.W., Correia A., Phillips A.J.L., 2008. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity 28: 1–13. https://www.fungaldiversity.org/fdp/sfdp/28-1.pdf
- Amalfi M., Raymundo T., Valenzuela R., Decock C., 2012. Fomitiporia cupressicola sp. nov., a parasite on Cupressus arizonica, and additional unnamed clades in the southern USA and northern Mexico, determined by multilocus phylogenetic analyses. Mycologia 104(4): 880–893. https://doi.org/10.3852/11-196
- Chen Q., Bakhshi M., Balci Y., Broders K.D., Cheewangkoon R., … Crous P.W., 2022. Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417–564. https://doi.org/10.3114/sim.2022.101.06
- Cabral A., Rego C., Nascimento T., Oliveira H., Groenewald J.Z., Crous P.W., 2012. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology 116: 62–80. https://doi.org/10.1016/j.funbio.2011.09.010
- Carbone I., Kohn L.M., 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051
- Crous P.W., Groenewald J.Z., Risede J.M., Hywel-Jones N.L., 2004. Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology 50: 415–429.
- Gardes M., Bruns T.D., 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x
- Glass N.L., Donaldson G.C., 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
- Gramaje D., Úrbez-Torres J.R., Sosnowski M.R., 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease 102: 12–39. https://doi.org/10.1094/PDIS-04-17-0512-FE
- Guarnaccia V., Kraus C., Markakis E., Alves A., Armengol J., Eichmeier A., Compant S., Gramaje D., 2022. Fungal trunk diseases of fruit trees in Europe: pathogens, spread and future directions. Phytopathologia Mediterranea 61: 563–599. https://doi.org/10.36253/phyto-14167
- Inderbitzin P., Bostock R.M., Trouillas F.P., Michailides T.J., 2010. A six locus phylogeny reveals high species diversity in Botryosphaeriaceae from California almond. Mycologia 102: 1350–1368. https://doi.org/10.3852/10-006
- Lawrence D.P., Holland L.A., Nouri M.T., Travadon R., Abramians A., … Trouillas F.P., 2018. Molecular phylogeny of Cytospora species associated with canker diseases of fruit and nut crops in California, with the descriptions of ten new species and one new combination. IMA Fungus 9: 333–369. https://doi.org/10.5598/imafungus.2018.09.02.07
- Lawrence D.P., Nouri M.T., Trouillas F.P., 2019. Taxonomy and multi-locus phylogeny of cylindrocarpon-like species associated with diseased roots of grapevine and other fruit and nut crops in California. Fungal Systematics and Evolution 4: 59–75. https://doi.org/ 10.3114/fuse.2019.04.06
- Lin L., Fan X.L., Groenewald J.Z., Jami F., Wingfield M.J., … Crous PW., 2024. Cytospora: an important genus of canker pathogens. Studies in Mycology 109: 323–340. https://doi.org/10.3114/sim.2024.109.05
- Liu Y.J., Whelen S., Hall B.D., 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
- Lofgren L.A., Stajich J.E., 2021. Fungal biodiversity and conservation mycology in light of new technology, big data, and changing attitudes. Current Biology 31: 1312–1325. https://doi.org/10.1016/j.cub.2021.06.083
- Manawasinghe I.S., Dissanayake A.J, Li X., Liu M., Wanasinghe D.N., …, Yan J., 2019. High genetic diversity and species complexity of Diaporthe associated with grapevine dieback in China. Frontiers in Microbiology 10: 1936. https://doi.org/10.3389/fmicb.2019.01936
- Marin-Felix Y., Hernández-Retrepo M., Wingfield M.J., Akulov A., Carnegie A.J., … Crous P.W., 2019. Genera of phytopathogenic fungi: GOPHY 2. Studies in Mycology 92: 47–133. https://doi.org/10.1016/j.simyco.2018.04.002.
- Martino I., Spadaro D., Guarnaccia V., 2025. Fungal trunk pathogens of fruit and nut tree crops: identification, characterization, detection, and perspectives for a critical global issue. Plant Disease 109: 1192–1210. https://doi.org/10.1094/PDIS-10-24-2069-FE
- Mostert L., Groenewald J.Z., Summerbell R.C., Gams W., Crous P.W., 2006. Taxonomy and pathology of Togninia (Diaporthales) and its Phaeoacremonium anamorphs. Studies in Mycology 54: 1–113. https://doi.org/10.3114/sim.54.1.1
- Nilsson R.H., Anslan S., Bahram M., Wurzbacher C., Baldrian P., Tedersoo L., 2019. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Reviews Microbiology 17: 95–109. https://doi.org/10.1038/s41579-018-0116-y
- O’Donnell K., Cigelnik E., 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103–116. https://doi.org/ 10.1006/mpev.1996.0376
- Phillips A.J.L., Alves A., Abdollahzadeh J., Slippers B., Wingfield M.J., … Crous P.W., 2013. The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology 76: 51–167. https://doi.org/10.3114/sim0021
- Santos L., Alves A., Alves R., 2017. Evaluating multi-locus phylogenies for species boundaries determination in the genus Diaporthe. PeerJ 5: e3120. https://doi.org/10.7717/peerj.3120
- Slippers B., Wingfield M.J., 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews 21: 90–106. https://doi.org/10.1016/j.fbr.2007.06.002
- Srivathsan A., Lee L., Katoh K., Hartop E., Kutty S.N., … Meier R., 2021. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biology 19: 217. https://doi.org/10.1186/s12915-021-01141-x
- Tegli S., Bertelli E., Surico G., 2000. Sequence analysis of ITS ribosomal DNA in five Phaeoacremonium species and development of a PCR-based assay for the detection of P. chlamydosporum and P. aleophilum in grapevine tissue. Phytopathologia Mediterranea 39: 134–149. https://doi.org/10.14601/Phytopathol_Mediterr-1555
- Travadon R., Lawrence DP., Rooney-Latham S., Gubler W.D, Wilcox W.F., ... Baumgartner K., 2015. Cadophora species associated with wood-decay of grapevine in North America. Fungal Biology 119: 53–66. htpps://doi.org/10.1016/j.funbio.2014.11.002
- Trouillas F.P., Urbez-Torres J.R., Gubler W.D., 2010. Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia 102: 319–336. https://doi.org/10.3852/08-185
- Wang Q., Cole J.R., 2024. Updated RDP taxonomy and RDP Classifier for more accurate taxonomic classification. Microbiology Resource Announcements 13: e01063-23. https://doi.org/10.1128/mra.01063-23
- White T.J., Bruns T., Lee S., Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications (Eds. M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White), Academic Press, San Diego, CA, USA: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
