Published 2025-09-12
Keywords
- Downy mildew,
- Vitis vinifera,
- SYBR Green,
- grapevine,
- ITS1
- portable lab station ...More
How to Cite
Copyright (c) 2025 Roberta CORONELLI, Giuseppe INCAMPO, Davide CORNACCHIA, Flora SPATARO, Francesco FARETRA, Stefania POLLASTRO, Donato GERIN

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Plasmopara viticola, the causal agent of grapevine downy mildew, is a widespread and significant plant pathogen. A quantitative PCR (qPCR) assay using a portable thermocycler was developed to enable rapid and early on-site detection of P. viticola. The internal transcribed spacer 1 (ITS1) region was selected as the target, and the specific primer pairs PLAV19 was designed. The assay was optimized using traditional thermocyclers, testing three different primer concentrations (100, 200, and 300 nM), and two annealing temperatures (58°C and 60°C). Optimal conditions were 200 nM primer concentration and an annealing temperature of 60°C. Under these parameters, the assay yielded a limit of detection (LoD) of 1.5 fg/µL and a limit of quantification (LoQ) of 15 fg/µL for P. viticola DNA (strain PLVDisspa1), showing consistent performance across both thermocyclers. Specificity tests confirmed no cross-reactivity with DNA from common grapevine-associated microorganisms, biocontrol agents, other Oomycetes and several grapevine cultivars. The PLAV19 primer set was further validated on DNA extracted from healthy, artificially inoculated, and naturally infected grapevine tissues, including samples exhibiting nonspecific leaf symptoms and latent bunch infections. Three DNA extraction protocols were evaluated to validate the extraction method, and one of these was shown to be suitable for on-field applications. The developed assay was a reliable diagnostic tool for the early detection and monitoring of P. viticola under field conditions, with potential applications in disease forecasting and sustainable management of grapevine downy mildew.
Downloads
References
- Agnusdei A., De Miccolis Angelini R. M., Faretra F., Pollastro S., … Gerin D., 2024. AcOTApks Gene-Based Molecular Tools to Improve Quantitative Detection of the Mycotoxigenic Fungus Aspergillus carbonarius. Foods 14 (1): 65. https://doi.org/10.3390/foods14010065 DOI: https://doi.org/10.3390/foods14010065
- Boso S., Alonso-Villaverde V., Gago, P., Santiago J. L., … Martínez M. C., 2014. Susceptibility to downy mildew (Plasmopara viticola) of different Vitis varieties. Crop Protection 63: 26–35. https://doi.org/10.1016/j.cropro.2014.04.018 DOI: https://doi.org/10.1016/j.cropro.2014.04.018
- Burruano S., 2000. The life cycle of Plasmopara viticola, cause of downy mildew of vine. Mycologist 14(4): 179–182. https://doi.org/10.1016/S0269-915X(00)80040-3 DOI: https://doi.org/10.1016/S0269-915X(00)80040-3
- Cornara D., Boscia D., D’Attoma G., Digiaro M., Ligorio A. M., … Saponari M., 2025. An integrated strategy for pathogen surveillance unveiled Xylella fastidiosa ST1 outbreak in hidden agricultural compartments in the Apulia region (Southern Italy). European Journal of Plant Pathology 171(2): 277–285. https://doi.org/10.1007/s10658-024-02945-7 DOI: https://doi.org/10.1007/s10658-024-02945-7
- Cséfalvay L., Di Gaspero G., Matouš K., Bellin D., Ruperti B., … Olejníčková J., 2009. Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. European Journal of Plant Pathology 125: 291–302. https://doi.org/10.1007/s10658-009-9482-7 DOI: https://doi.org/10.1007/s10658-009-9482-7
- Davis M. J., 1980. Isolation Media for the Pierce’s Disease Bacterium. Phytopathology 70: 425. https://doi.org/10.1094/Phyto-70-425 DOI: https://doi.org/10.1094/Phyto-70-425
- De Miccolis Angelini R. M., Habib W., Rotolo C., Pollastro S., … Faretra F., 2010. Selection, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to the fungicide boscalid. European journal of plant pathology 128: 185–199. https://doi.org/10.1007/s10658-010-9643-8 DOI: https://doi.org/10.1007/s10658-010-9643-8
- Delmas C. E., Fabre F., Jolivet J., Mazet I. D., Richart Cervera S., Deliere L., … Delmotte F., 2016. Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Evolutionary Applications 9(5): 709–725. https://doi.org/10.1111/eva.12368 DOI: https://doi.org/10.1111/eva.12368
- DeShields J. B., Bomberger R. A., Woodhall J. W., Wheeler D. L., Moroz N., … Tanaka, K., 2018. On-site molecular detection of soil-borne phytopathogens using a portable real-time PCR system. Journal of visualized experiments (132): 56891. https://doi.org/10.3791/56891 DOI: https://doi.org/10.3791/56891
- Douillet A., Laurent B., Beslay, J., Massot M., Raynal M., … Delmotte F., 2022. LAMP for in‐field quantitative assessments of airborne grapevine downy mildew inoculum. Journal of Applied Microbiology 133(6): 3404–3412. https://doi.org/10.1111/jam.15762 DOI: https://doi.org/10.1111/jam.15762
- Doyle J. J., Doyle J. L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19(1): 11–15.
- EPPO 2021. Specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity (PM 7/98 (5)). EPPO Bulletin 51: 468–498. https://doi.org/10.1111/epp.12780S. DOI: https://doi.org/10.1111/epp.12780
- EPPO. 2024. Use of EPPO Diagnostic Standards (PM 7/76 (6)). EPPO Bulletin 54: 312–316. https://doi.org/10.1111/epp.13046 DOI: https://doi.org/10.1111/epp.13046
- Fedele G., Maddalena G., Furiosi M., Rossi V., Toffolatti S. L., Caffi T., 2025. Relationship between the oospore dose in the leaf litter above the vineyard ground and primary infections by Plasmopara viticola. Frontiers in Plant Science 16: 1524959. https://doi.org/10.3389/fpls.2025.1524959 DOI: https://doi.org/10.3389/fpls.2025.1524959
- Fontaine M. C., Labbé F., Dussert Y., Delière L., Richart-Cervera S., … Delmotte F., 2021. Europe as a bridgehead in the worldwide invasion history of grapevine downy mildew, Plasmopara viticola. Current Biology 31(10): 2155–2166. https://doi.org/10.1016/j.cub.2021.03.009 DOI: https://doi.org/10.1016/j.cub.2021.03.009
- Gerin D., Cariddi C., de Miccolis Angelini R. M., Rotolo C., Dongiovanni C., Pollastro S., 2019. First report of Pseudomonas Grapevine Bunch Rot caused by Pseudomonas syringae pv. syringae. Plant Disease 103(8): 1954–1960. https://doi.org/10.1094/PDIS-11-18-1992-RE DOI: https://doi.org/10.1094/PDIS-11-18-1992-RE
- Gouveia C., Santos R. B., Paiva-Silva C., Buchholz G., Malhó R., Figueiredo A. 2024. The pathogenicity of Plasmopara viticola: a review of evolutionary dynamics, infection strategies and effector molecules. BMC Plant Biology 24(1): 327. https://doi.org/10.1186/s12870-024-05037-0 DOI: https://doi.org/10.1186/s12870-024-05037-0
- Gramaje D., Urbez-Torres J. R., Sosnowski M. R., 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant disease 102(1): 12–39. https://doi.org/10.1094/PDIS-04-17-0512-FE DOI: https://doi.org/10.1094/PDIS-04-17-0512-FE
- Heger L., Sharma N., McCoy A. G., Martin F. N., Miles L. A., Chilvers M. I., Miles T. D., 2025. Multiplexed real-time and digital PCR tools to differentiate clades of Plasmopara viticola causing downy mildew in grapes. Plant Disease Ja. https://doi.org/10.1094/PDIS-01-25-0173-SR DOI: https://doi.org/10.1094/PDIS-01-25-0173-SR
- Heyman L., Höfle R., Kicherer A., Trapp O., Ait Barka E., Töpfer R., … Höfte M., 2021. The durability of quantitative host resistance and variability in pathogen virulence in the interaction between European Grapevine cultivars and Plasmopara viticola. Frontiers in Agronomy 3: 684023. https://doi.org/10.3389/fagro.2021.684023 DOI: https://doi.org/10.3389/fagro.2021.684023
- Huang X., Wang X., Zhou L., Kong F., Liu Y., Wang Z., Zhang H., 2023. TaqMan-MGB PCR Method for Rapid Detection of QoI Fungicide Resistance in Chinese Populations of Plasmopara viticola. Plant Disease 107(10): 3007–3013. https://doi.org/10.1094/PDIS-12-22-2954-RE DOI: https://doi.org/10.1094/PDIS-12-22-2954-RE
- Incampo G., Chiaromonte E., Cornacchia D., De Miccolis A., Pollastro S., Gerin D., 2025. Development of qPCR and ddPCR-based diagnostic tools for detection and quantification of Apiospora marii. Plant Disease (ja). https://doi.org/10.1094/PDIS-03-25-0635-SR DOI: https://doi.org/10.1094/PDIS-03-25-0635-SR
- Khatal M. P., Narute T. K., Sonawane R. B., … Bhalerao V. K., 2023. Effect of weather parameters on the growth and development of downy mildew of grape caused by Plasmopara viticola. Journal of Agrometeorology 25(4): 610–612. https://doi.org/10.54386/jam.v25i4.2063 DOI: https://doi.org/10.54386/jam.v25i4.2063
- Koledenkova K., Esmaeel Q., Jacquard C., Nowak J., Clément C., … Ait Barka E., 2022. Plasmopara viticola the causal agent of downy mildew of grapevine: from its taxonomy to disease management. Frontiers in Microbiology 13: 889472. https://doi.org/10.3389/fmicb.2022.889472 DOI: https://doi.org/10.3389/fmicb.2022.889472
- Kong X., Qin W., Huang X., Kong F., Schoen C. D., … Zhang H., 2016. Development and application of loop-mediated isothermal amplification (LAMP) for detection of Plasmopara viticola. Scientific reports 6(1): 28935. https://doi.org/10.1038/srep28935 DOI: https://doi.org/10.1038/srep28935
- Koo C., Malapi-Wight M., Kim H. S., Cifci O. S.,Vaughn-Diaz V. L., Ma B., … Han A., 2013. Development of a real-time microchip PCR system for portable plant disease diagnosis. PloS one 8(12): e82704. https://doi.org/10.1371/journal.pone.0082704 DOI: https://doi.org/10.1371/journal.pone.0082704
- Marimuthu K., Ayyanar K., Varagur Ganesan M., Vaikuntavasan P., Uthandi S., … Nagaraj G., 2020. Loop‐mediated isothermal amplification assay for the detection of Plasmopara viticola infecting grapes. Journal of Phytopathology 168(3): 144–155. https://doi.org/10.1111/jph.12866 DOI: https://doi.org/10.1111/jph.12866
- Massi F., Torriani S. F., Borghi L., Toffolatti S. L., 2021. Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a case study. Microorganisms 9(1): 119. https://doi.org/10.3390/microorganisms9010119 DOI: https://doi.org/10.3390/microorganisms9010119
- McDermott J. M., Brandle U., Dutly F., Haemmerli U. A., Keller S., Muller K. E., Wolfe M. S., 1994. Genetic variation in powdery mildew of barley: Development of RAPD, SCAR, and VNTR Markers. Phytopathology 84(11): 1316–1321. https://doi.org/10.1094/Phyto-84-1316 DOI: https://doi.org/10.1094/Phyto-84-1316
- McGovern P. E., Jalabadze M., Batiuk S., Callahan M. P., Smith K. E., … Lordkipanidze D., 2017. Early Neolithic wine of Georgia in the South Caucasus. Proceedings of the National Academy of Sciences of the United States of America 114: E10309–E10318. https://doi.org/10.1073/pnas.171472811 DOI: https://doi.org/10.1073/pnas.1714728114
- Muthukumar G., Kamalakannan A., Johnson I., Kamaraj P., Muthuvel I., … Angayarkanni T., 2025. Early detection and quantification of airborne inocula of Plasmopara viticola causing grapevine downy mildew using impaction spore trap. Physiological and Molecular Plant Pathology 102842. https://doi.org/10.1016/j.pmpp.2025.102842 DOI: https://doi.org/10.1016/j.pmpp.2025.102842
- Nguyen P. L., Sudheesh P. S., Thomas A. C., Sinnesael M., Haman K., … Cain K. D., 2018. Rapid detection and monitoring of Flavobacterium psychrophilum in water by using a handheld, field‐portable quantitative PCR system. Journal of Aquatic Animal Health 30(4): 302–311. https://doi.org/10.1002/aah.10046 DOI: https://doi.org/10.1002/aah.10046
- Nigro F., Gallone P., Romanazzi G., Schena L., Ippolito A., … Salerno M. G., 2005. Incidence of Verticillium wilt on olive in Apulia and genetic diversity of Verticillium dahliae isolates from infected trees. Journal of Plant Pathology 87: 13–23. https://www.jstor.org/stable/41998203
- Nourrisson C., Brunet J., Flori P., Moniot M., Bonnin V., Delbac F., … Poirier P., 2020. Comparison of DNA extraction methods and real-time PCR assays for the detection of Blastocystis sp. in stool specimens. Microorganisms 8(11): 1768. https://doi.org/10.3390/microorganisms8111768 DOI: https://doi.org/10.3390/microorganisms8111768
- Palumbo J. D., O’Keeffe T. L., Fidelibus M. W., 2016. Characterization of Aspergillus section Nigri species populations in vineyard soil using droplet digital PCR. Letters in applied microbiology 63 (6) :458–465. https://doi.org/10.1111/lam.12667 DOI: https://doi.org/10.1111/lam.12667
- Piccolo S. L., Alfonzo A., Conigliaro G., Moschetti G., Burruano S., … Barone A., 2012. A simple and rapid DNA extraction method from leaves of grapevine suitable for polymerase chain reaction analysis. African Journal of Biotechnology 11(45): 10305. https://doi.org/10.5897/AJB11.3023 DOI: https://doi.org/10.5897/AJB11.3023
- Pollastro S., Dongiovanni C., De Miccolis Angelini R. M., Abbatecola A., de Guido M. A., Lepore A., … Faretra F., 2005. Occurrence and distribution of ochratoxin-producing fungi in vineyards in South of Italy. In Atti International Workshop: Ochratoxin A in grapes and wine: prevention and control (pp. 61–61). https://doi.org/10.3390/toxins2040840 DOI: https://doi.org/10.3390/toxins2040840
- Puelles M., Arbizu-Milagro J., Castillo-Ruiz F. J., … Peña J. M., 2024. Predictive models for grape downy mildew (Plasmopara viticola) as a decision support system in Mediterranean conditions. Crop Protection 175: 106450. https://doi.org/10.1016/j.cropro.2023.106450 DOI: https://doi.org/10.1016/j.cropro.2023.106450
- Raguseo C., Gerin, D., PollastroS., Rotolo,C., Rotondo,P. R., … De Miccolis Angelini R.M., 2021. A Duplex-Droplet Digital PCR Assay for Simultaneous Quantitative Detection of Monilinia fructicola and Monilinia laxa on Stone Fruits. Frontiers in Microbiology 12: 747560. https://doi.org/10.3389/fmicb.2021.747560 DOI: https://doi.org/10.3389/fmicb.2021.747560
- Rodríguez-Moreno, L., Pineda, M., Soukupová, J., Macho, A. P., Beuzón, C. R., Barón, M., … Ramos, C. 2008. Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging. Photosynthesis research 96: 27–35. https://doi.org/10.1007/s11120-007-9278-6 DOI: https://doi.org/10.1007/s11120-007-9278-6
- Rogers S. L., Atkins S. D., West J. S., 2009. Detection and quantification of airborne inoculum of Sclerotinia sclerotiorum using quantitative PCR. Plant Pathology 58: 324–331. https://doi.org/10.1111/j.1365-3059.2008.01945.x DOI: https://doi.org/10.1111/j.1365-3059.2008.01945.x
- Rossi V, Caffi T, Bugiani R, Dellavalle D. 2008. Estimating the germination dynamics of Plasmopara viticola oospores using the hydrothermal time. Plant Pathology 57: 216–226. https://doi.org/10.1111/j.1365-3059.2007.01738.x. DOI: https://doi.org/10.1111/j.1365-3059.2007.01738.x
- Rossi V, Caffi T, Gobbin D. 2013. Contribution of molecular studies to botanical epidemiology and disease modelling: grapevine downy mildew as a case-study. European Journal of Plant Pathology 135: 641–54. https://doi.org/10.1007/s10658-012-0114-2. DOI: https://doi.org/10.1007/s10658-012-0114-2
- Rouxel M., Mestre P., Baudoin A., Carisse O., Delière L., Ellis M. A., Gadoury D., Lu J., … Delmotte F., 2014. Geographic distribution of cryptic species of Plasmopara viticola causing downy mildew on wild and cultivated grape in eastern North America. Phytopathology 104(7): 692–701. https://doi.org/10.1094/PHYTO-08-13-0225-R DOI: https://doi.org/10.1094/PHYTO-08-13-0225-R
- Rouxel M., Mestre P., Comont G., Lehman B. L., Schilder A., … Delmotte F., 2013. Phylogenetic and experimental evidence for host‐specialized cryptic species in a biotrophic oomycete. New Phytologist 197(1): 251–263. https://doi.org/10.1111/nph.12016 DOI: https://doi.org/10.1111/nph.12016
- Sánchez-Zelaia H., Nanni I., Oggiano I., Hernández M., Díez-Navajas A., … Collina M., 2024. Droplet Digital PCR: A New Molecular Method to Detect G1105S/V Mutations in Plasmopara viticola CesA3 Gene. Biology 13: 919. https://doi.org/10.3390/biology13110919 DOI: https://doi.org/10.3390/biology13110919
- Santander R. D., Meredith C. L., Aćimović S. G., 2019. Development of a viability digital PCR protocol for the selective detection and quantification of live Erwinia amylovora cells in cankers. Scientific Reports 9(1): 11530. https://doi.org/10.1038/s41598-019-47976-x DOI: https://doi.org/10.1038/s41598-019-47976-x
- Si Ammour M., Bove F., Toffolatti S. L., … Rossi V., 2020. A real-time PCR assay for the quantification of Plasmopara viticola oospores in grapevine leaves. Frontiers in Plant Science 11: 1202. https://doi.org/10.3389/fpls.2020.01202 DOI: https://doi.org/10.3389/fpls.2020.01202
- Sotolář R., 2007. Comparison of grape seedlings population against downy mildew by using different provocation methods. Notulae Botanicae Horti Agrobotanici Cluj-Napoc 35: 61–68. https://doi.org/10.15835/nbha352223
- Toffolatti S. L., Russo G., Campia P., Bianco P. A., Borsa P, … Sierotzki H., 2018. A time‐course investigation of resistance to the carboxylic acid amide mandipropamid in field populations of Plasmopara viticola treated with anti‐resistance strategies. Pest management science 74(12): 2822–2834. https://doi.org/10.1002/ps.5072 DOI: https://doi.org/10.1002/ps.5072
- Toffolatti S. L., Serrati L., Sierotzki H., Gisi U., Vercesi A., 2007. Assessment of QoI resistance in Plasmopara viticola oospores. Pest Management Science: Formerly Pesticide Science 63(2): 194–201. https://doi.org/10.1002/ps.1327 DOI: https://doi.org/10.1002/ps.1327
- Toffolatti S. L., Venturini G., Maffi D., Vercesi A., 2012. Phenotypic and histochemical traits of the interaction between Plasmopara viticola and resistant or susceptible grapevine varieties. BMC Plant Biology 12: 1–16. https://doi.org/10.1186/1471-2229-12-124 DOI: https://doi.org/10.1186/1471-2229-12-124
- Valsesia G., Gobbin D., Patocchi,A., Vecchione A., Pertot I., Gessler C., 2005. Development of a high-throughput method for quantification of Plasmopara viticola DNA in grapevine leaves by means of quantitative real-time polymerase chain reaction. Phytopathology 95(6): 672–678. https://doi.org/10.1094/PHYTO-95-0672 DOI: https://doi.org/10.1094/PHYTO-95-0672
- Wang D., Jiao X., Jia H., Cheng S., Jin X., … Su X., 2022. Detection and quantification of Verticillium dahliae and V. longisporum by droplet digital PCR versus quantitative real-time PCR. Frontiers in Cellular and Infection Microbiology 12: 995705. https://doi.org/10.3389/fcimb.2022.995705 DOI: https://doi.org/10.3389/fcimb.2022.995705
- Xin Z., Velten J. P., Oliver M. J., Burke J. J., 2003 High-throughput DNA extraction method suitable for PCR. BioTechniques 34: 820–824, 826. https://doi.org/10.2144/03344rr04 DOI: https://doi.org/10.2144/03344rr04
- Yang L., Chu B., Deng J., Yuan K., Sun Q., Ma Z., 2023. Use of a real-time PCR method to quantify the primary infection of Plasmopara viticola in commercial vineyards. Phytopathology Research 5(1): 19. https://doi.org/10.1186/s42483-023-00178-w DOI: https://doi.org/10.1186/s42483-023-00178-w
- Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. L., 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics 13: 1–11. https://doi.org/10.1186/1471-2105-13-134 DOI: https://doi.org/10.1186/1471-2105-13-134
- Yu Y., Zhang Y., Yin L., Lu J., 2012. The mode of host resistance to Plasmopara viticola infection of grapevines. Phytopathology 102(11): 1094–1101. https://doi.org/10.1094/PHYTO-02-12-0028-R DOI: https://doi.org/10.1094/PHYTO-02-12-0028-R
