Vol. 63 No. 3 (2024)
Articles

Estimated costs of plum pox virus and management of sharka, the disease it causes

Mariano CAMBRA
Instituto Valenciano de Investigaciones Agrarias (IVIA), Virology and Immunology, Plant Protection and Biotechnology Centre, 46113 Moncada-Valencia
Mónica MADARIAGA
Instituto de Investigaciones Agropecuarias INIA-La Platina, 11610 Santiago
Christina VARVERI
Benaki Phytopathological Institute, Laboratory of Virology, Scientific Directorate of Phytopathology, 14561 Kifissia
Kadriye ÇAĞLAYAN
Mustafa Kemal University, Plant Protection Department, 31034 Antakya-Hatay
Ali Ferhan MORCA
Directorate of Plant Protection Central Research Institute, Gayret Mah, Fatih Sultan Mehmet Bulv, 06172, Yenimahalle, Ankara
Sergei CHIRKOV
Dept. of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234
Miroslav GLASA
Institute of Virology, Biomedical Research Center of Slovak Academy of Sciences, Bratislava
Categories

Published 2024-11-15

Keywords

  • PPV,
  • direct costs,
  • indirect costs,
  • losses,
  • ELISA tests,
  • eradication,
  • subsidies,
  • quarantine,
  • RNQP
  • ...More
    Less

How to Cite

[1]
M. CAMBRA, “Estimated costs of plum pox virus and management of sharka, the disease it causes”, Phytopathol. Mediterr., vol. 63, no. 3, pp. 343–365, Nov. 2024.

Abstract

The disease “sharka”, caused by Potyvirus plumpoxi (plum pox virus), is the most harmful viral disease affecting stone fruits. The virus spreads over long distances through illegal and insufficiently controlled exchange of infected propagative plant material. Once established in an area, the virus spreads locally through vegetative propagation of infected plant material, and naturally through aphid-vectors. Previously considered a European problem, sharka has now been reported in 54 Prunus-growing countries in all continents except Oceania, although the disease has been eradicated from the United States of America. The economic cost of the disease in the 28 years from 1995 to 2023 is estimated to be €2.4 × 109, equivalent to approx. 0.17% of the stone fruit industry’s value. This includes more than over €2 × 109 in direct fruit losses, €1.4 million from international rejection of symptomatic fruit, and over €100 million in eradication and disease limitation costs. Indirect costs include €137 million, mainly associated with ELISA analyses, and approx. €130 million in costs related to research and science networks. Cumulative global losses from the sharka pandemic since the decade 1910/20 probably surpass €13 × 109. These outlays exclude indirect trade costs, economic losses, genetic erosion of traditional cultivars, and the costs of developing new cultivars tolerant or resistant to plum pox virus. The decline in these costs compared to the previously evaluated €10 billion from the 1970s to 2006 is analyzed. Four case studies (for Spain, Turkey, Chile, and Greece) illustrate different sharka scenarios and management strategies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Acuña R., 1993. Outbreaks of Plum pox virus in Chile. European and Mediterranean Plant Protection Organization (EPPO) Conference Plum pox virus, Bordeaux, France. 5–8 August. EPPO, Paris, France.
  2. Akbaş B., Değirmenci K., Çiftçi O., Kaya A., Yurtmen M.,…Türkölmez Ş., 2011. Update on plum pox virus distribution in Turkey. Phytopathologia Mediterranea 50 (1): 75−83. https://doi.org/10.14601/Phytopathol_Mediterr-8646.
  3. Atanasoff, D., (1932. Plum pox. A new virus disease. Annals of the University of Sofia, Faculty of Agriculture and Silviculture 11: 49–69.
  4. Barba M., Hadidi A., Candresse T., Cambra M., 2011. Plum pox virus. In: Virus and Virus-like Diseases of Pome and Stone Fruits (A. Hadidi, M. Barba, T. Candresse, W. Jelkmann, ed.), APS, St. Paul, MN, USA, 185–197 https://doi.org/10.1094/9780890545010.036. DOI: https://doi.org/10.1094/9780890545010.036
  5. Batlle I., Cantin C. M., Badenes M. L., Rios G., Ruiz D., … García-Brunton J., 2018. Frutales de hueso y pepita. In: Influencia del cambio climático en la mejora genética de plantas (J. García Brunton, O. Pérez Tornero, J.E. Cos Terrer, L. Ruiz García, E,. Sánchez López, ed.), Comunidad Autónoma de la Región de Murcia, Sociedad Española de Ciencias Hortícolas, Sociedad Española de Genética, Murcia, Spain, 97–130. https://www.imida.es/documents/13436/877249/INFLUENCIA+DEL+CAMBIO+CLIMATICO+EN+LA+MEJORA+GENÉTICA+DE+PLANTAS-IMIDA-WEB.pdf/3fce9e5f-17da-4bd7-b227-830289d48409
  6. Birişik N., Morca A. F., Erilmez S., Çiftçi O., Yurtmen M., … Öntepeli M L., 2021. Assessment of a six-year national survey and eradication program for Plum pox virus in Turkey. Plant Protection Bulletin 61(2): 19–32. https://doi.org/10.16955/bitkorb.793804 DOI: https://doi.org/10.16955/bitkorb.793804
  7. Bolat I., Ak B.E., Acar I., Ikinci A., 2017. Plum culture in Turkey. Acta Horticulturae 1175: 15–18 https://doi.org/10.17660/ActaHortic.2017.1175.4. DOI: https://doi.org/10.17660/ActaHortic.2017.1175.4
  8. Çağlayan K., Gazel M.H., 1998. Virus and virus-like diseases of stone fruits in the Eastern Mediterranean area of Turkey. Acta Horticulturae 42: 527–529. https://doi.org/10.17660/ActaHortic.1998.472.66 DOI: https://doi.org/10.17660/ActaHortic.1998.472.66
  9. Çağlayan K., Yurdakul S., 2017. Sharka disease (Plum pox virus) in Turkey: the past, present and future. Acta Horticulturae 1163: 69–74. https://doi.org/10.17660/ActaHortic.2017.1163.11 DOI: https://doi.org/10.17660/ActaHortic.2017.1163.11
  10. Cambra M., Vidal E., 2017. Sharka, a vector-borne disease caused by Plum pox virus: vector species, transmission mechanism, epidemiology and mitigation strategies to reduce its natural spread. Acta Horticulturae 1163: 57–68. https://doi.org/10.17660/actahortic.2017.1163.10 DOI: https://doi.org/10.17660/ActaHortic.2017.1163.10
  11. Cambra M., Capote N., Myrta A., Llácer, G., 2006a. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bulletin 36: 202–204. https://doi.org/10.1111/j.1365-2338.2006.01027.x DOI: https://doi.org/10.1111/j.1365-2338.2006.01027.x
  12. Cambra M.A., Serra J., Cano A., Cambra, M., 2006b. Plum pox virus (PPV) in Spain. 215 pp. In: A review of Plum pox virus. Current status of Plum pox virus and sharka disease worldwide. (N. Capote, M. Cambra, G. Llácer, F. Petter, LG Platts, A.S. Roy, I.M. Smith, ed). EPPO Bulletin 36: 205–218. DOI: https://doi.org/10.1111/j.1365-2338.2006.00996.x
  13. Cambra M., Boscia D., Gil M., Bertolini E., Olmos, A., 2011. Immunology and immunological assays applied to the detection, diagnosis and control of fruit tree viruses. In: Virus and Virus-like Disease of Pome and Stone Fruits (A. Hadidi, M. Barba,T. Candresse, W. Jelkmann, ed.), APS. Press, St. Paul, MN, USA, 303–313. https://doi.org/10.1094/9780890545010.055 DOI: https://doi.org/10.1094/9780890545010.055
  14. Candresse T., Saenz P., García, J.A., Boscia, D., Navratil, M.,… Cambra, M. 2011. Analysis of the epitope structure of Plum pox virus coat protein. Phytopathology 101: 611–619. https://doi.org/10.1094/PHYTO-10-10-0274 DOI: https://doi.org/10.1094/PHYTO-10-10-0274
  15. Capote N., Cambra M., Llácer G., Petter F., Platts L.G, …Smith, I. M., (eds)., 2006. A review of Plum pox virus. EPPO Bulletin 36(2): 201–349. https://gd.eppo.int/reporting/article-1121 DOI: https://doi.org/10.1111/j.1365-2338.2006.01028.x
  16. Capote N., Bertolini E., Olmos A., Vidal E., Martinez M.C., Cambra M., 2009. Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR. International Microbiology 12: 1–6. https://doi.org/10.2436/20.1501.01.75
  17. Capote N., Cambra M. A., Botella P., Gorris M. T., Martínez M. C.,…Cambra M., 2010. Detection, characterization, epidemiology and eradication of Plum pox virus Marcus type in Spain. Journal of Plant Pathology 92: 619–628. https://www.jstor.org/stable/41998850
  18. Chilean customs, Aduanas de Chile., 2020. Dynamic Export database. Customs. Accessed, 19 november, 2020, from https.//www.aduana.cl/base-de-datos-dinamicas-de-exportaciones/aduana/2020-11-19/151830.html
  19. Chirkov S., Sheveleva A., Gasanova T., Kwon D., … Osipov G., 2022. New cherry-adapted plum pox virus phylogroups discovered in Russia. Plant Disease 106: 2591–2600. https://doi.org/10.1094/PDIS-01-22-0006-RE DOI: https://doi.org/10.1094/PDIS-01-22-0006-RE
  20. Cirili M., Geuna F., Babini A.R., Bozhkova V., Catalano L., … Bassi D., 2016. Fighting Sharka in Peach: Current Limitations and Future Perspectives. Frontiers in Plant Science 7: 1290. https://doi.org/10.3389/fpls.2016.01290 DOI: https://doi.org/10.3389/fpls.2016.01290
  21. Coşkan S., Morca A.F., Akbaş B., Çelik A., Santosa A. I. 2022. Comprehensive surveillance and population study on plum pox virus in Ankara Province of Turkey. Journal of Plant Diseases and Protection 129: 981–991. https://doi.org/10.1007/s41348-022-00597-5 DOI: https://doi.org/10.1007/s41348-022-00597-5
  22. CREDA, 2023. Estimated production cost of stone fruit (peaches) for the farmer. Centro de Investigación en Economía y Desarrollo Agroalimentario, Spain. Accessed June 2024, from https://www.creda.es/es/coste-produccion-fruta-hueso-agricultores/
  23. Culliney, T.W., 2014. Crop losses to arthropods. In: Integrated Pest Management. Pesticide problems (D. Pimentel, R.Pestrin, ed.), Springer Nature, 201–225. DOI: https://doi.org/10.1007/978-94-007-7796-5_8
  24. Damsteegt V. D., 2008. Plum pox virus (sharka). CABI Compendium. https://doi.org/10.1079/cabicompendium.42203 DOI: https://doi.org/10.1079/cabicompendium.42203
  25. De Mori G., Savazzini F., Geuna F., 2020. Molecular tools to investigate sharka disease in Prunus species. In: Applied Plant Biotechnology for Improving Resistance to Biotic Stress (P. Poltronieri, Y. Hong, ed.), Academic Press, Elsevier Inc., Oxford, 203–223. DOI: https://doi.org/10.1016/B978-0-12-816030-5.00010-0
  26. Dimitriadou A., 2015. Serological and molecular characterisation of Plum pox virus (PPV) populations in Greece. MSc Thesis, Aristotle University of Thessaloniki. https://doi.org/10.26262/heal.auth.ir.286908
  27. Drogoudi P., Pantelides G., 2017. Results of evaluation of agronomic and qualitative characteristics of new and older varieties of apricot cultivated in Greece. In: Sharka virus and apricot tree: new data. Proceedings of the Conference organized by the Association of Agronomists of Argolida (D. Dimou, ed.)., Argos, Greece, 35–48 (in Greek).
  28. EC, 2022. European Comission DG Agri E2-F&V-2022. EU fruit and vegetables market observatory. Stone fruit sub-groupe. Vol. 032-Trade fresh. The peaches and nectarines market in the EU 27: Trade on fresh products.
  29. EPPO, 2020. Plum pox virus. EPPO datasheets on pests recommended for regulation. Accessed April 25, 2024, from https://gd.eppo.int DOI: https://doi.org/10.1111/epp.13006
  30. EPPO, 2023. PM 7/32 (2) Plum pox virus. EPPO Bulletin 53: 518–539. https://doi.org/10.1111/epp.12948 DOI: https://doi.org/10.1111/epp.12948
  31. EPPO, 2024. Plum pox virus. EPPO datasheets on pests recommended for regulation. Accessed April 25, 2024, from https://gd.eppo.int. EPPO code PPV000. Last updated: 2023-09-11.
  32. EPPO PRA, 2012. Pest Risk Analysis for Plum pox virus. https://pra.eppo.int› getfile.
  33. EU 2023. DG AGRI DASI-BOARD. Peaches and nectarines EU weekly prices for peaches (ex-packaging station, €/100 kg). Accessed April 25, 2024, from https://agriculture.ec.europa.eu/document/download/7edd5ce4-8bed-4209-aa48-3f58118b4d47_en?filename=dashboard-peaches_en_0.pdf
  34. EU regulation 2016/2031. Regulation of the European Parliament of the Council of 26 October 2016 on protective measures against pests of plants, amending Regulations (EU) No 228/2013, (EU) No 652/2014 and (EU) No 1143/2014 of the European Parliament and of the Council and repealing Council Directives 69/464/EEC, 74/647/EEC, 93/85/EEC, 98/57/EC, 2000/29/EC, 2006/91/EC and 2007/33/EC. http://data.europa.eu/eli/reg/2016/2031/oj
  35. FAOSTAT, 2023. Faostat. Data retrieved for years between 1995 and 2023. Accessed April 25, 2024, from https://www.fao.org/faostat/es/#data
  36. FAOSTAT, 2024. Faostat. Data retrieved for 2024. Accessed April 25, 2024, from https://www.fao.org/faostat/es/#data
  37. Fiore N., Araya C., Zamorano A., González F., Mora R., … Rosales I.M., 2010. Tracking Plum pox virus in Chile throughout the year by three different methods and molecular characterization of Chilean isolates. Julius-Kühn-Archiv 427: 156–161.
  38. García J. A., Glasa M., Cambra M., Candresse T., 2014. Plum pox virus and sharka: a model potyvirus and a major disease. Molecular Plant Pathology 15: 226–41. https://doi.org/10.1111/mpp.12083 DOI: https://doi.org/10.1111/mpp.12083
  39. García J. A., Rodamilans B., Martínez-Turiño S., Valli A. A., Simón-Mateo C., Cambra M., 2024. Plum pox virus: An overview of the potyvirus behind sharka, a harmful stone fruit disease. Annals of Applied Biology (in press).
  40. Ghahremani. A., Ebrahim Ganji E., Marjani A., 2023. Growth, yield, and biochemical behaviors of important stone fruits affected by plant genotype and environmental conditions. Scientia Horticulturae 321: 112–211. https://doi.org/10.1016/j.scienta.2023.112211 DOI: https://doi.org/10.1016/j.scienta.2023.112211
  41. Gildow F., Damsteegt V., Stone A., Scheider W., Luster D., Levy L., 2004. Plum pox in North America: identification of aphid vectors and a potential role for fruit in virus spread. Phytopathology 94(8): 868–874. https://doi.org/10.1094/PHYTO.2004.94.8.868 DOI: https://doi.org/10.1094/PHYTO.2004.94.8.868
  42. Glasa M., Prikhodko Y., Predajna L., Nagyova A., Shneyder Y., … Candresse T., 2013. Characterization of sour cherry isolates of Plum pox virus from the Volga basin in Russia reveals a new cherry strain of the virus. Phytopathology 103: 972–979. https://doi.org/10.1094/PHYTO-11-12-0285-R DOI: https://doi.org/10.1094/PHYTO-11-12-0285-R
  43. Gottwald T. R., Wierenga E., Luo W. Q., Parnell S., 2013. Epidemiology of Plum pox “D” strain in Canada and the USA. Canadian Journal of Plant Patholology 35: 442–457. https://doi.org/10.1080/07060661.2013.844733 DOI: https://doi.org/10.1080/07060661.2013.844733
  44. Guillesky S., 2018. China-Peoples Republic of; Stone fruits annual, 2018. Global Agriculture Information Network Report, GAIN report CH 18037. USDA Foreign Agricultural Service. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Stone%20Fruit%20Annual_Beijing_China%20-%20Peoples%20Republic%20of_6-29-2018.pdf
  45. Guo M., Qi D., Dong J., Dong S., Yang X., Qian Y., Zhou X., Wu J., 2023. Development of Dot-ELISA and Colloidal Gold Immunochromatographic Strip for Rapid and Super-Sensitive Detection of Plum Pox Virus in Apricot Trees. Viruses 15(1): 169. https://doi.org/10.3390/v15010169 DOI: https://doi.org/10.3390/v15010169
  46. Gutiérrez-Jara J.P., Vogt-Geisse K., Correa M.C.G., Vilches-Ponce K., Pérez L.M., Chowell G., 2023. Modeling the impact of agricultural mitigation measures on the spread of sharka disease in sweet cherry orchards. Plants 12(19): 3442. https://doi.org/10.3390/plants12193442 DOI: https://doi.org/10.3390/plants12193442
  47. Hadidi A., Barba M., 2011. Economic impact of pome and stone fruit viruses and viroids. In: Virus and Virus-like Diseases of Pome and Stone Fruits (A. Hadidi, M. Barba, T. Candresse, W. Jelkmann, ed), APS, St. Paul, MN, USA, 1–7. https://doi.org/10.1094/9780890545010 DOI: https://doi.org/10.1094/9780890545010.001
  48. Herrera G., 2013. Investigations of the Plum pox virus in Chile in the past 20 years. Chilean Journal of Agricultural Research 73(1): 60–65. https://doi.org/10.4067/S0718-58392013000100009 DOI: https://doi.org/10.4067/S0718-58392013000100009
  49. Huang H., Che g Z., Zhang Z., Wang Y., 2008. History of cultivation and trends in China. In: The Peach. Botany, Production and Uses (D.R. Layne, D. Bassi, ed.), CABI, Wallingford, AMA Dataset Ltd, UK, 37–60. https://doi.org/10.1079/9781845933869.0037 DOI: https://doi.org/10.1079/9781845933869.0037
  50. IPPC-FAO, 2018. International standards for phytosanitary measures: diagnostic protocols: Plum pox virus. ISPM 27, Annex 2 (DP2). https://assets.ippc.int/static/media/files/publication/en/2019/07/DP_02_2018_En_PlumPox_Rev_2018-09-21.pdf
  51. ISTAT, 2023. Prunus fruit production in Italian regions. Accessed May 15, 2024, from http://dati.istat.it/Index.aspx?QueryId=33705
  52. Jelkmann W., Sanderson D., Berwarth C., James D., 2018. First detection and complete genome characterization of a Cherry (C) strain isolate of plum pox virus from sour cherry (Prunus cerasus) in Germany. Journal of Plant Diseases and Protection 125(3): 267–272. https://doi.org/10.1007/s41348-018-0155-7 DOI: https://doi.org/10.1007/s41348-018-0155-7
  53. Jones R. A. C., Naidu R. A., 2019. Virus Diseases: Current Status and Future Perspectives. Annual Review of Virology 6: 387–409. https://doi.org/10.1146/annurev-virology-092818-015606 DOI: https://doi.org/10.1146/annurev-virology-092818-015606
  54. Kaponi M., Αxarli Ε.Α., Κoutretsis P., Νikoloudakis Ν., Drogoudi P., Berbati Μ.G., 2012. First report of plum pox virus in almond trees in Greece in the context of Phytosanitary control. Ιn: Abstracts of the 16th Panhellenic Phytopathlogical Congress, Thessaloniki, Greece, October 2012, 143 (in Greek).
  55. Kegler H., Hartmann W., 1998. Present status of controlling conventional strains of Plum pox virus. In: Plant Virus Disease Control (A. Hadidi, R.K. Khetarpal, H. Koganezawa, ed.), APS Press St. Paul, MN, USA, 616–628.
  56. Kimura K., Usugi T., Hoshi H., Kato A., Ono T., … Tsuda S., 2016. Surveys of Viruliferous Alate Aphid of Plum pox virus in Prunus mume Orchards in Japan. Plant Disease 100(1): 40–48. https://doi.org/10.1094/PDIS-05-15-0540-RE DOI: https://doi.org/10.1094/PDIS-05-15-0540-RE
  57. Labonne G., Quiot J.B., 2001. Aphids can acquire plum pox virus from infected fruits. Acta Horticulturae 550: 79–83. https://doi.org/10.17660/ActaHortic.2001.550.8 DOI: https://doi.org/10.17660/ActaHortic.2001.550.8
  58. Labonne G., Yvon M. Quiot J.B., Avinent L. Llacer G., 1995. Aphids as potential vectors of plum pox virus: comparison of methods of testing and epidemiological consequences. Acta Horticulturae 386: 207–218. https://doi.org/10.17660/ActaHortic.1995.386.27 DOI: https://doi.org/10.17660/ActaHortic.1995.386.27
  59. Lebas B. S. M., Ochoa-Corona F. M., Elliott D. R., Double B., Smales T., Wilson J. A., 2006. Control and monitoring: quarantine situation of Plum pox virus in New Zealand. EPPO Bulletin 36: 296–301. https://doi.org/10.1111/j.1365-2338.2006.00999.x DOI: https://doi.org/10.1111/j.1365-2338.2006.00999.x
  60. Levy L., Damsteegt V., Welliver R., 2000. First report of Plum pox virus (sharka disease) in Prunus persica in the United States. Plant Disease 84(2): 202. https://doi.org/10.1094/PDIS.2000.84.2.202B DOI: https://doi.org/10.1094/PDIS.2000.84.2.202B
  61. Liu J., 2018. Plum and apricot industry: present status and future perspectives in Sichuan, China. Acta Horticulturae 1214: 19–22. https://doi.org/10.17660/ActaHortic.2018.1214.4 DOI: https://doi.org/10.17660/ActaHortic.2018.1214.4
  62. Loera-Muro A., Gutiérrez-Campos R., Delgado M., Hernández-Camacho S., Holguín-Peña R. J., 2017. Identification of Plum pox virus causing sharka disease on peach (Prunus persica L.) in Mexico. Canadian Journal of Plant Pathology 39(1): 83–86. http://doi.org/10.1080/07060661.2017.1292549 DOI: https://doi.org/10.1080/07060661.2017.1292549
  63. Madariaga M., Ramírez I., Vega R., Meza P., Nova N., Devia J., Sepúlveda K., Defilippi B., 2024. Effect of storage temperature on viral RNA accumulation in Plum pox virus-infected Red Lyon plum fruit from the Central Valley of Chile. Discov Appl Sc 6: 417. https://doi.org/10.1007/s42452-024-06078-8 DOI: https://doi.org/10.1007/s42452-024-06078-8
  64. MAPA 2021. Ministerio de Agricultura, Pesca y Alimentación. Ministry of Agriculture, Fisheries and Food. Anuario de Estadística 2021. Boletín de precios fruta de hueso campañas 2021, semana 22, de 2021(31 mayo-6 junio), en palés de 100 kg. Accessed May 15, 2024. https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/boletinsemanalpreciosfrutadehueso202131_maya6_jun_tcm30-563516.pdf and https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/frutas-y- hortalizas/boletin_fruta_de_hueso.aspx, and www.mapa.gob.es
  65. Martinez C., Courtois P., Thébaud G., Tidball M., 2024. The private management of plant disease epidemics: Infection levels and social inefficiencies. European Review of Agricultural Economics 51(2): 248–274. https://doi.org/10.1093/erae/jbae009 DOI: https://doi.org/10.1093/erae/jbae009
  66. Martínez-Gómez P., Dicenta F., Audergon J. M., 2000. Behaviour of apricot (Prunus armeniaca L.) cultivars in the presence of sharka (plum pox potyvirus): a review. Agronomie 20: 407–422. https://hal.science/hal-00886049 DOI: https://doi.org/10.1051/agro:2000137
  67. Matthews R. E. F., Hull R., 2002. Plant Virology. Academic Press, San Diego.
  68. Morca A.F., Coşkan S., Akbaş B., 2022. Detection, Characterization, and Monitoring of Plum pox virus in Zonguldak Province. KSU Journal of Agriculture and Nature 25(6): 1369–1377 (in Turkish). https://doi.org/10.18016/ksutarimdoga.vi.1015786 DOI: https://doi.org/10.18016/ksutarimdoga.vi.1015786
  69. Mulderij R., 2018. Overview global stonefruit market. Fresh Plaza. Accessed July 30, 2024, from https://www.freshplaza.com/north-america/article/9021519/overview-global-stonefruit-market/
  70. NAPPO 2009. RSPM 35. Guidelines for the Movement of Stone and Pome Fruit Trees and Grapevines into a NAPPO Member Country. NAPPO, Ottawa. Canada. https://www.nappo.org/application/files/4715/9452/9276/RSPM_35-e.pdf
  71. Nemchinov L., Crescenzi A., Hadidi A., Piazzolla P., Verderevskaya T., 1998. Present status of the new cherry subgroup of plum pox virus (PPV-C). In: Plant Virus Disease Control (A. Hadidi, R.K. Khetarpal, H. Koganezawa, ed.), APS Press, St Paul, Minnesota, USA, 629-638.
  72. Németh M., 1994. History and importance of plum pox virus in stone-fruit production. EPPO Bulletin 24: 525–536. https://doi.org/10.1111/j.1365-2338.1994.tb01065.x DOI: https://doi.org/10.1111/j.1365-2338.1994.tb01065.x
  73. Oerke E. C., Dehne, H.W. Schönberck, F., Weber, A., 1994. Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops. Elsevier Science B.V., Amsterdam.
  74. Oishi M., Inoue Y., Kagatsume R., Shukuya T., Kasukabe R., …Y. Maeda 2018. First Report of Plum pox virus Strain M in Japan. Plant Disease 102 (4): 829. https://doi.org/10.1094/PDIS-08-17-1327-PDN DOI: https://doi.org/10.1094/PDIS-08-17-1327-PDN
  75. OPEKEPE 2023. Ο.Π.Ε.Κ.Ε.Π.Ε.-Ενιαία Αίτηση Ενίσχυσης 2023. Organization of Agricultural Payments and Markets in Greece. Accessed April 15, 2024, from https://www.opekepe.gr/opekepe-organisation-gr/opekepe-e-services-gr/efarmoges-ypostiriksis-synallagon-me-ton-politi/eniaia-aitisi-enisxysis-2023
  76. Palmieri A., 2024. The evolution of cherry production over the last 15 years. Cherry times. Accessed June 15, 2024, from https://cherrytimes.it/en/news/The-evolution-of-cherry-production-over-the-last-5-years.
  77. Paulus A.O., Ullstrup S.E., 1978. Economic Impact of Plant Disease. Academic Press.
  78. Pedrelli A., Panattoni A., Clotrozzi L., 2024. The sharka disease on stone fruits in Italy: a review, with a focus on Tuscany. European Journal of Plant Pathology 169: 287–300. https://doi.org/10.1007/s10658-024-02827-y DOI: https://doi.org/10.1007/s10658-024-02827-y
  79. Rao G.P., Reddy G.M., 2020. Overview of yield losses due to plant viruses. In: Applied Plant Virology. Advances, detection and antiviral strategies (L.P. Awasthi, ed.), Academic Press, 531–550. https://doi.org/10.1016/B978-0-12-818654-1.00038-4 DOI: https://doi.org/10.1016/B978-0-12-818654-1.00038-4
  80. Ravelonandro M., Scorza R., Polak J., Callahan A., Krška B., Kundu J., Briard P., 2013. HoneySweet Plum. A Valuable Genetically Engineered Fruit-Tree Cultivar. Food and Nutrition Sciences 4: 45–49. http://dx.doi.org/10.4236/fns.2013.46A005 DOI: https://doi.org/10.4236/fns.2013.46A005
  81. Retamales J. B., 2011. World temperate fruit production: Characteristics and challenges. Revista Brasileira de Fruticultura 33: 121–130. https://doi.org/10.1590/S0100-29452011000500015 DOI: https://doi.org/10.1590/S0100-29452011000500015
  82. Rezende J. A. M., Camelo V. M., Kitajima E. W., 2016. First Report on detection of Plum pox virus in imported peach fruits in Brazil. Plant Disease 100(4): 869. Disease note. https://doi.org/10.1094/PDIS-09-15-1015-PDN DOI: https://doi.org/10.1094/PDIS-09-15-1015-PDN
  83. Rimbaud L., Dallot S., Gottwald T., Decroocq V., Jacquot E., Soubeyrand S., Thébaud G., 2015. Sharka epidemiology and worldwide management strategies: learning lessons to optimize disease control in perennial plants. Annual Review of Phytopathology 53: 357–378. http://dx.doi.org/10.1146/annurev-phyto-080614-120140 DOI: https://doi.org/10.1146/annurev-phyto-080614-120140
  84. Rodoni B., Merriman P., Moran J., Whattam M., 2006. Control and monitoring: phytosanitary situation of Plum pox virus in Australia. EPPO Bulletin 36: 293–295. DOI: https://doi.org/10.1111/j.1365-2338.2006.00990.x
  85. Rodoni B., Sarec R., Mann R., Moran J., Merriman P., Ochoa-Corona F., Lovelock D., 2020. National Diagnostic Protocol of Australia. Plum pox virus (PPV). NDP2 V4. Subcommitte on Plant Health Diagnostics. https://www.plantbiosecuritydiagnostics.net.au/app/uploads/2020/12/NDP-2-Plum-pox-virus-V4.pdf
  86. Rosales M., Hinrichsen P., Herrera G., 1998. Molecular characterization of Plum pox virus isolated from apricots, plums and peaches in Chile. Acta Horticulturae 472: 401–407. https://dx.doi.org/10.17660/ActaHortic.1998.472.47 DOI: https://doi.org/10.17660/ActaHortic.1998.472.47
  87. Samara R., Hunter D. H., Stobbs L. W., Greig N., Lowery D. T., Delury N. C., 2017. Impact of Plum pox virus (PPV-D) infection on peach tree growth, productivity and bud cold hardiness. Canadian Journal of Plant Patholology 39(2): 218–228. https://doi.org/10.1080/07060661.2017.1336489 DOI: https://doi.org/10.1080/07060661.2017.1336489
  88. Savary S., Willocquet L., Pethybridge S. J., Esmjker P., McRoberts N., Nelson A., 2019. The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution 3: 430–439. https://doi.org/10.1038/s41559-018-0793-y DOI: https://doi.org/10.1038/s41559-018-0793-y
  89. Scholthof K-B. G., Adkins S., Czosnek H., Palukaitis P., Jacquot E., … Foster G. D., 2011. Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology 12(9): 938–954. https://doi.org/10.1111/j.1364-3703.2011.00752.x DOI: https://doi.org/10.1111/j.1364-3703.2011.00752.x
  90. Scorza R., Hily J.M., Callahan A., Malinwski T., Cambra M., … Ravelonandro M., 2007. Deregulation of Plum Pox Resistant Transgenic Plum ‘HoneySweet’. Acta Horticulturae 738: 669–673. https://doi.org/10.17660/ActaHortic.2007.738.88 DOI: https://doi.org/10.17660/ActaHortic.2007.738.88
  91. Scorza R., Ravelonandro M., Callahan A., Zagrai I., Polak J., … Dardick C., 2016. HoneySweet’ (C5), the First Genetically Engineered Plum pox virus-resistant Plum (Prunus domestica L.) Cultivar. HortScience 51(5): 601–603. https://doi.org/10.21273/HORTSCI.51.5.601 DOI: https://doi.org/10.21273/HORTSCI.51.5.601
  92. Sheveleva A., Osipov G., Gasanova T., Ivanov P., Chirkov S., 2021. Plum pox virus strain C isolates can reduce sour cherry productivity. Plants 10(11): 2327. https://doi.org/10.3390/plants10112327 DOI: https://doi.org/10.3390/plants10112327
  93. Simões D., de Andrade E., Sabino R., 2023. Fungi in One Health Perspective. Encyclopedia 3(3), 900–918. https://doi.org/10.3390/encyclopedia3030064 DOI: https://doi.org/10.3390/encyclopedia3030064
  94. Snover-Clift K. L., Clement P. A., Jablonski R., Mungari R. J., Mavrodieva V. A., Negvi S., Levy L., 2007. First Report of Plum pox virus on Plum in New York State. Plant Disease 91(11): 1512. https://doi.org/10.1094/PDIS-91-11-1512C DOI: https://doi.org/10.1094/PDIS-91-11-1512C
  95. Sochor J., Babula P., Adam V., Krska B., Kizek R., 2012. Sharka: The Past, The Present and The Future. Viruses 4(11): 2853–2901. https://doi.org/10.3390/v4112853 DOI: https://doi.org/10.3390/v4112853
  96. Strange R. N., Scott P. R., 2005. Plant disease: A threat to global food security. Annual Review of Phytopathology 43: 3.1–3.34. https://doi.org/10.1146/annurev.phyto.43.113004.133839 DOI: https://doi.org/10.1146/annurev.phyto.43.113004.133839
  97. Thomson D., 2006. Plum pox virus (PPV) in Canada. In: A Review of Plum Pox Virus. Current Status of Plum Pox Virus and Sharka Disease Worldwide (N. Capote, M. Cambra, G. Llácer, F. Petter, L.G. Platts, A.S. Roy, I.M. Smith, ed.) EPPO Bulletin 36: 205–218. DOI: https://doi.org/10.1111/j.1365-2338.2006.00947.x
  98. Thompson D., McCann M., MacLeod M., Lye D., Green M., James D., 2001. First Report of Plum Pox Potyvirus in Ontario, Canada. Plant Disease 85(1): 97. https://doi.org/10.1094/PDIS.2001.85.1.97C DOI: https://doi.org/10.1094/PDIS.2001.85.1.97C
  99. Thresh J. M., Fargette D., Otim-Nape G. W., 1994. Effects of African cassava mosaic virus on the yield of cassava. Tropical Science 26: 34–37.
  100. TURKSTAT 2023. Türkiye Statistical Institute. Ministry of Agriculture and Forest (MoAF) and published by TurkStat within the scope of the Official Statistics Program. Accessed May 20, 2024, https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr
  101. USDA 2019. USDA declares United States free from Plum pox virus. Accessed February 28, 2024, from https://www.aphis.usda.gov/aphis/newsroom/news/sa_by_date/sa-2019/plum-pox-declaration
  102. Varveri C., 2017. Plum pox virus and its integrated management. In: Sharka Virus and Apricot Tree: New Data. In: Proceedings of the Conference organized by the Association of Agronomists of Argolida (Dimou D., ed.). Argos, Greece, June 2017, 25–34 (in Greek).
  103. Vidal E., Moreno A., Bertolini E., Pérez-Panadés J., Carbonell E.A., Cambra M., 2010. Susceptibility of Prunus rootstocks to natural infection of Plum pox virus and effect of mineral oil treatments. Annals of Applied Biology 157: 447–457. https://doi.org/10.1111/j.1744-7348.2010.00436.x DOI: https://doi.org/10.1111/j.1744-7348.2010.00436.x
  104. Vidal E., Zagrai L.A., Malinowski T., Soika G., Warabieda W., Cambra M., 2020. Statistical model for Plum pox virus prediction in Prunus nursery blocks using vector and virus incidence data in four different European ecological areas. Annals of Applied Biology 177(3): 308–324. https://doi.org/10.1111/aab.12617 DOI: https://doi.org/10.1111/aab.12617
  105. Waterworth H. E., Hadidi A., 1998. Economic losses due to plant viruses. In: Plant Virus Disease Control (A. Hadidi, R. K. Khetarpal, H. Koganezawa, ed.) APS Press, St. Paul, MN, USA, 1–13.
  106. Welliver R., Valley K., Richwine N., Clement G., Albright D., 2014. Expelling a Plant Pest Invader: The Pennsylvania Plum Pox Eradication Program, A Case Study in Regulatory Cooperation. Posted September 2014. PennState, Pennsylvania Department of Agriculture and APHIS. Accessed January 20, 2024, from https://www.agriculture.pa.gov/Plants_Land_Water/PlantIndustry/plant-protection/PlumPox/Documents/PA%20PPV%20Eradication%209-2014.pdf
  107. Xing F., Wang H.Q., Li S. 2017. Risk assessment of Plum pox virus in China. Acta Horticulturae 1163: 141–146. https://doi.org/10.17660/ActaHortic.2017.1163.21 DOI: https://doi.org/10.17660/ActaHortic.2017.1163.21
  108. Zhou J., Xing F., Wang H., Shifang L., 2021. Occurrence, distribution and genomic characteristics of plum pox virus isolates from common apricot (Prunus armeniaca) and Japanese apricot (P. mume) in China. Plant Disease 105(11): 3474-3480. https://doi.org/10.1094/PDIS-09-20-1936-RE DOI: https://doi.org/10.1094/PDIS-09-20-1936-RE