Vol. 59 No. 3 (2020): 11th IWGTD - Special issue on Grapevine Trunk Diseases
Short Notes - 11th Special issue on Grapevine Trunk Diseases

Host defence activation and root colonization of grapevine rootstocks by the biological control fungus Trichoderma atroviride

Elodie STEMPIEN
Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
Romain Jean, Gaston PIERRON
Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
Ilka ADENDORFF
Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
Wynand Jacobus VAN JAARSVELD
Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
Francois HALLEEN
Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
Lizel MOSTERT
Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa

Published 2020-11-14

Keywords

  • Vitis spp.,
  • Trichoderma spp.,
  • defence response

How to Cite

[1]
E. STEMPIEN, R. J. G. PIERRON, I. ADENDORFF, W. J. . VAN JAARSVELD, F. HALLEEN, and L. MOSTERT, “Host defence activation and root colonization of grapevine rootstocks by the biological control fungus Trichoderma atroviride”, Phytopathol. Mediterr., vol. 59, no. 3, pp. 615–626, Nov. 2020.

Abstract

Several Trichoderma species can act as biocontrol agents and hold the potential to control soilborne diseases through different modes of action. Little is known about the colonization pattern of Trichoderma atroviride in grapevine roots and activation of induced systemic resistance in planta. A laboratory model was developed to assess root colonization and its impact on grapevine defence activation. Rootstock cuttings from 1-year-old dormant canes were inoculated with conidium suspensions of T. atroviride T-77 or T. atroviride USPP T1, and host and inoculum colonisation were assessed after 21 d. The two strains of T. atroviride were re-isolated from the treated plants (from 70% of the roots and 20% of crowns). Colonization rates did not depend on the Trichoderma strain or rootstock cultivar. However, up-regulation of targeted defence genes was dependent on the inoculated Trichoderma strain and rootstock cultivar. Furthermore, in leaves of rootstock cultivars ‘US 8-7’ and ‘Paulsen 1103’, genes were up-regulated which encode for PR proteins involved in plant defence or production of stilbenic phytoalexins. Trichoderma atroviride T-77 was transformed with tdTomato fluorescent protein to allow visualization by confocal laser scanning microscopy. These results give new insights into the mechanisms of grapevine-Trichoderma interactions, and allow detection of establishment of potential biocontrol agents within host tissues.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

LITTERATURE CITED
Adrian, M., Jeandet, P., 2012. Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions. Fitoterapia 83, 1345–1350. https://doi.org/10.1016/j.fitote.2012.04.004
Alaniz, S., Abad-Campos, P., García-Jiménez, J., Armengol, J., 2011. Evaluation of fungicides to control Cylindrocarpon liriodendri and Cylindrocarpon macrodidymum in vitro, and their effect during the rooting phase in the grapevine propagation process. Crop Protection 30, 489–494. https://doi.org/10.1016/j.cropro.2010.12.020
Bellée, A., Cluzet, S., Dufour, M.-C., Mérillon, J.-M., Corio-Costet, M.-F., 2018. Comparison of the impact of two molecules on plant defense and on efficacy against Botrytis cinerea in the vineyard: A plant defense inducer (Benzothiadiazole) and a fungicide (Pyrimethanil). Journal of Agricultural and Food Chemistry 66, 3338–3350. https://doi.org/10.1021/acs.jafc.7b05725
Bellée, A., Comont, G., Nivault, A., Abou‐Mansour, E., Coppin, C., Dufour, M.C., Corio‐Costet, M.F., 2017. Life traits of four Botryosphaeriaceae species and molecular responses of different grapevine cultivars or hybrids. Plant Pathology 66, 763–776. https://doi.org/10.1111/ppa.12623
Berlanas, C., Andrés‐Sodupe, M., López‐Manzanares, B., Maldonado‐González, M.M., Gramaje, D., 2018. Effect of white mustard cover crop residue, soil chemical fumigation and Trichoderma spp. root treatment on black-foot disease control in grapevine. Pest Management Science 74, 2864–2873. https://doi.org/10.1002/ps.5078
Boller, T., Felix, G., 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60, 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
Brotman, Y., Briff, E., Viterbo, A., Chet, I., 2008. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiology 147, 779–789. https://doi.org/10.1104/pp.108.116293
Bruisson, S., 2015. Potentialisation de réactions de défense suite à la mycorhization de la Vigne et effets sur la production de stilbènes. PhD Thesis. Université de Haute Alsace, Laboratoire Vigne, Biotechnologies et Environnement - Colmar, France.
Conrath, U., Beckers, G.J.M., Langenbach, C.J.G., Jaskiewicz, M.R., 2015. Priming for enhanced defense. Annual Review of Phytopathology 53, 97–119. https://doi.org/10.1146/annurev-phyto-080614-120132
Contreras-Cornejo, H.A., Macías-Rodríguez, L., del-Val, E., Larsen, J., 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology 92. https://doi.org/10.1093/femsec/fiw036
Di Marco, S., Osti, F., 2007. Applications of Trichoderma to prevent Phaeomoniella chlamydospora infections in organic nurseries. Phytopathologia Mediterranea 46, 73–83.
dos Santos, R.F., Heckler, L.I., Lazarotto, M., da Ressurreição Garrido, L., Rego, C., Blume, E., 2016. Trichoderma spp. and Bacillus subtilis for control of Dactylonectria macrodidyma in grapevine. Phytopathologia Mediterranea 55, 293–300.
Edreva, A., 2004. A novel strategy for plant protection: Induced resistance. Journal of Cell and Molecular Biology 3, 61–69.
Ferrigo, D., Causin, R. and Raiola, A., 2017. Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease. BioControl, 62(6), 821-833. https://doi.org/10.1007/s10526-017-9847-3
Fourie, P.H., Halleen, F., 2006. Chemical and biological protection of grapevine propagation material from trunk disease pathogens. European Journal of Plant Pathology 116, 255–265. https://doi.org/10.1007/s10658-006-9057-9
Fourie, P.H., Halleen, F., van der Vyver, J., Schreuder, W., 2001. Effect of Trichoderma treatments on the occurrence of decline pathogens in the roots and rootstocks of nursery grapevines. Phytopathologia Mediterranea 40, S473–S478.
Gallou, A., Cranenbrouck, S., Declerck, S., 2009. Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. European Journal of Plant Pathology 124, 219–230. https://doi.org/10.1007/s10658-008-9407-x
Gorfer, M., Klaubauf, S., Bandian, D., Strauss, J., 2007. Cadophora finlandia and Phialocephala fortinii: Agrobacterium-mediated transformation and functional GFP expression. Mycological Research 111, 850–855. https://doi.org/10.1016/j.mycres.2007.05.002
Gramaje, D., Armengol, J., 2011. Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. Plant Disease 95, 1040–1055. https://doi.org/10.1094/PDIS-01-11-0025
Gramaje, D., Muñoz, R.M., Lerma, M.L., García-Jiménez, J., Armengol, J., 2010. Fungal grapevine trunk pathogens associated with Syrah decline in Spain. Phytopathologia Mediterranea 48, 396–402. https://doi.org/10.14601/Phytopathol_Mediterr-2934
Gramaje, D., Úrbez-Torres, J.R., Sosnowski, M.R., 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Disease 102, 12–39. https://doi.org/10.1094/PDIS-04-17-0512-FE
Guzmán-Guzmán, P., Alemán-Duarte, M.I., Delaye, L., Herrera-Estrella, A., Olmedo-Monfil, V., 2017. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genetics 18, 16. https://doi.org/10.1186/s12863-017-0481-y
Guzmán-Guzmán, P., Porras-Troncoso, M.D., Olmedo-Monfil, V., Herrera-Estrella, A., 2018. Trichoderma species: versatile plant symbionts. Phytopathology 109, 6–16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW
Halleen, F., Fourie, P.H., 2016. An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. South African Journal of Enology and Viticulture 37, 104–114. https://doi.org/10.21548/37-2-825
Halleen, F., Fourie, P.H., Crous, P.W., 2007. Control of black foot disease in grapevine nurseries. Plant Pathology 56, 637–645. https://doi.org/10.1111/j.1365-3059.2007.01613.x
Halleen, F., Fourie, P.H., Crous, P.W., 2006a. A review of black foot disease of grapevine. Phytopathologia Mediterranea 45, S55–S67.
Halleen, F., Schroers, H.J., Groenewald, J.Z., Rego, C., Oliveira, H. and Crous, P.W., 2006b. Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevines. Studies in mycology, 55, 227-234. https://doi.org/10.3114/sim.55.1.227
Halleen, F., Schroers, H.J., Groenewald, J.Z. and Crous, P.W., 2004. Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp.). Studies in Mycology, 50(2), 431-455.
Haran, S., Schickler, H., Oppenheim, A., Chet, I., 1995. New components of the chitinolytic system of Trichoderma harzianum. Mycological Research 99, 441–446. https://doi.org/10.1016/S0953-7562(09)80642-4
Harman, G.E., 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96, 190–194. https://doi.org/10.1094/PHYTO-96-0190
Harman, G.E., Hayes, C.K., Lorito, M., Broadway, R.M., Di Pietro, A., Peterbauer, C., Tronsmo, A., 1993. Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83, 313–318.
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M., 2004. Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2, 43–56. https://doi.org/10.1038/nrmicro797
Harman, G.E., Kubicek, C.P., 2002. Trichoderma and Gliocladium: Basic biology, taxonomy and genetics. CRC Press, Boca Raton, FL, USA.
Hellemans, J., Mortier, G., Paepe, A.D., Speleman, F., Vandesompele, J., 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology 8, R19. https://doi.org/10.1186/gb-2007-8-2-r19
Hermosa, R., Rubio, M.B., Cardoza, R.E., Nicolás, C., Monte, E., Gutiérrez, S., 2013. The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology 16, 69–80. https://doi.org/10.2436/20.1501.01.181
Hermosa, R., Viterbo, A., Chet, I., Monte, E., 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology, 158, 17–25. https://doi.org/10.1099/mic.0.052274-0
Howell, C.R., 2006. Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 96, 178–180. https://doi.org/10.1094/PHYTO-96-0178
Lorito, M., Peterbauer, C., Hayes, C.K., Harman, G.E., 1994. Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140, 623–629. https://doi.org/10.1099/00221287-140-3-623
Lorito, M., Woo, S.L., Harman, G.E., Monte, E., 2010. Translational research on Trichoderma: From ’omics to the field. Annual Review of Phytopathology 48, 395–417. https://doi.org/10.1146/annurev-phyto-073009-114314
Manganiello, G., Sacco, A., Ercolano, M.R., Vinale, F., Lanzuise, S., Pascale, A., Napolitano, M., Lombardi, N., Lorito, M., Woo, S.L., 2018. Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Frontiers in Microbiology 9. https://doi.org/10.3389/fmicb.2018.01966
Martínez-Medina, A., Appels, F.V.W., Wees, S.C.M. van, 2017. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. Plant Signaling & Behavior 12, e1345404. https://doi.org/10.1080/15592324.2017.1345404
Mendoza-Mendoza, A., Zaid, R., Lawry, R., Hermosa, R., Monte, E., Horwitz, B.A., Mukherjee, P.K., 2018. Molecular dialogues between Trichoderma and roots: Role of the fungal secretome. Fungal Biology Reviews 32, 62–85. https://doi.org/10.1016/j.fbr.2017.12.001
Morán-Diez, E., Hermosa, R., Ambrosino, P., Cardoza, R.E., Gutiérrez, S., Lorito, M., Monte, E., 2009. The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Molecular Plant-Microbe Interactions 22, 1021–1031. https://doi.org/10.1094/MPMI-22-8-1021
Mutawila, C., Stander, C., Halleen, F., Vivier, M.A., Mostert, L., 2016a. Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: Expression of defence-related genes and phenotypes. Protoplasma 254, 863–879. https://doi.org/10.1007/s00709-016-0997-4
Mutawila, C., Vinale, F., Halleen, F., Lorito, M., Mostert, L., 2016b. Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathology 65, 104–113. https://doi.org/10.1111/ppa.12385
Nogueira-Lopez, G., Greenwood, D.R., Middleditch, M., Winefield, C., Eaton, C., Steyaert, J.M., Mendoza-Mendoza, A., 2018. The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defence and scavenging oxidative stress secreted proteins. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.00409
Pierron, R.J.G., Pouzoulet, J., Couderc, C., Judic, E., Compant, S., Jacques, A., 2016. Variations in early response of grapevine wood depending on wound and inoculation combinations with Phaeoacremonium aleophilum and Phaeomoniella chlamydospora. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.00268
Pieterse, C.M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C.M., Bakker, P.A.H.M., 2014. Induced Systemic Resistance by beneficial microbes. Annual Review of Phytopathology 52, 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
Probst, C., Jones, E.E., Ridgway, H.J., Jaspers, M.V., 2012. Cylindrocarpon black foot in nurseries—two factors that can increase infection. Australasian Plant Pathology 41, 157–163. https://doi.org/10.1007/s13313-011-0103-5
R Development Core Team, 2016. R: A language and environment for statistical computing. Vienna, Austria.
Reino, J.L., Guerrero, R.F., Hernández-Galán, R., Collado, I.G., 2007. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews 7, 89–123. https://doi.org/10.1007/s11101-006-9032-2
Rossdeutsch, L., Edwards, E., Cookson, S.J., Barrieu, F., Gambetta, G.A., Delrot, S., Ollat, N., 2016. ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. BMC Plant Biology 16, 91. https://doi.org/10.1186/s12870-016-0778-4
Rubio, M.B., Quijada, N.M., Pérez, E., Domínguez, S., Monte, E., Hermosa, R., 2014. Identifying beneficial qualities of Trichoderma parareesei for plants. Applied and Environmental Microbiology 80, 1864–1873. https://doi.org/10.1128/AEM.03375-13
Salas-Marina, M.A., Isordia-Jasso, M.I., Islas-Osuna, M.A., Delgado-Sánchez, P., Jiménez-Bremont, J.F., Rodríguez-Kessler, M., Rosales-Saavedra, M.T., Herrera-Estrella, A., Casas-Flores, S., 2015. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Frontiers in Plant Science 6. https://doi.org/10.3389/fpls.2015.00077
Segarra, G., Casanova, E., Bellido, D., Odena, M.A., Oliveira, E., Trillas, I., 2007. Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7, 3943–3952. https://doi.org/10.1002/pmic.200700173
Segarra, G., Ent, S.V. der, Trillas, I., Pieterse, C.M.J., 2009. MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biology 11, 90–96. https://doi.org/10.1111/j.1438-8677.2008.00162.x
Shoresh, M., Harman, G.E., Mastouri, F., 2010. Induced Systemic Resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48, 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450
Stempien, E., Goddard, M.-L., Leva, Y., Bénard-Gellon, M., Laloue, H., Farine, S., Kieffer-Mazet, F., Tarnus, C., Bertsch, C., Chong, J., 2018. Secreted proteins produced by fungi associated with Botryosphaeria dieback trigger distinct defense responses in Vitis vinifera and Vitis rupestris cells. Protoplasma 255, 613–628. https://doi.org/10.1007/s00709-017-1175-z
Úrbez-Torres, J.R., Haag, P., Bowen, P., O’Gorman, D.T., 2014. Grapevine trunk diseases in British Columbia: Incidence and characterization of the fungal pathogens associated with Esca and Petri Diseases of grapevine. Plant Disease 98, 469–482. https://doi.org/10.1094/PDIS-05-13-0523-RE
Verma, M., Brar, S.K., Tyagi, R.D., Surampalli, R.Y., Valéro, J.R., 2007. Antagonistic fungi, Trichoderma spp. : Panoply of biological control. Biochemical Engineering Journal 37, 1–20. https://doi.org/10.1016/j.bej.2007.05.012
Vinale, F., Marra, R., Scala, F., Ghisalberti, E.L., Lorito, M., Sivasithamparam, K., 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology 43, 143–148. https://doi.org/10.1111/j.1472-765X.2006.01939.x
Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Barbetti, M.J., Li, H., Woo, S.L., Lorito, M., 2008a. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology 72, 80–86. https://doi.org/10.1016/j.pmpp.2008.05.005
Vinale, F., Sivasithamparam, K., Ghisalberti, E.L., Marra, R., Woo, S.L., Lorito, M., 2008b. Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry 40, 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
Viterbo, A., Chet, I., 2006. TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Molecular Plant Pathology 7, 249–258. https://doi.org/10.1111/j.1364-3703.2006.00335.x
Woo, S.L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G., Lorito, M., 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8, 71–126. https://doi.org/10.2174/1874437001408010071
Woo, S.L., Scala, F., Ruocco, M., Lorito, M., 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96, 181–185. https://doi.org/10.1094/PHYTO-96-0181