Discovery of signature peptides through proteomic approach as potential biomarkers for root wilt infection in coconut trees
Published 2025-09-12
Keywords
- Disease detection,
- Phytoplasma,
- Proteome biomarkers,
- Root wilt,
- Signature peptides
How to Cite
Copyright (c) 2025 Perumalla Aman Jayaker, Sundararajan Vino, Subramanian Babu

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Root wilt disease of coconut associated with phytoplasma presence is characterized by late symptoms in the field and hence disease detection has been challenging. Several attempts have been made in the past for detecting the infection, which included microscopic, histochemical, immuno assays and DNA based methods. However, the successful detection with precision and by a cost-effective simple assay is still not available. The current study used two-dimensional electrophoresis followed by mass spectrometric identification of the differentially or uniquely expressed proteins in the infected palms compared to healthy ones. Among the different proteins identified in the study, mannan endo-1,4-beta mannosidase and BTB/POZ domain and ankyrin repeat containing NPR2 proteins were selected. Bioinformatic analyses were carried out to characterize these proteins and the signature peptides with antigenic properties were determined. Biomarker protein structure prediction, homology modelling indicated the structure and function as well as uniqueness of these proteins. The sequences of these signature peptides are unique to these proteins and were found to be part of salicylic acid binding amino acid residues, thus involved in systemic acquired resistance against pathogens of plants. It is reported the procedure for obtaining signature peptides of potential biomarker proteins for detection of root wilt infection in coconut. The antibodies developed against these peptides would have more specificity for a precise detection of root wilt infection in coconut farms.
Downloads
References
- Abdulsalam K.S., Abael-Mageed M.I., Resk M.A., Nageeb M.A., 1993. The influence of oxytetracycline on Wijamed date palm trees. Annals of Agricultural Sciences 38: 301–309.
- Babu M., Thangeswari S., Josephrajkumar A., Krishnakumar V., Karthikeyan A., Karun A., 2021. First report on the association of ‘Candidatus Phytoplasma asteris’ with lethal wilt disease of coconut (Cocos nucifera L.) in India. Journal of General Plant Pathology 87: 16–23. DOI: https://doi.org/10.1007/s10327-020-00970-y
- Babu S., Bansal V.K., Kav N.N.V., 2005. Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. Journal of Agricultural and Food Chemistry 53: 313–324. DOI: https://doi.org/10.1021/jf048922z
- Backer R., Naidoo S., van den Berg N., 2019. The non-expressor of pathogenesis-related genes 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Frontiers in Plant Science https://doi.org/10.3389/fpls.2019.00102. DOI: https://doi.org/10.3389/fpls.2019.00102
- Bahder B.W., Soto N., Mou D.F., Humphries A.R., Helmick E.E., 2020. Quantification and distribution of the 16SrIV-D phytoplasma in the wild date palm, Phoenix sylvestris, at different stages of decline using quantitative PCR (qPCR) analysis. Plant Disease 104: 1328–1334. DOI: https://doi.org/10.1094/PDIS-10-19-2146-RE
- Bahder B.W., Zumbado Echavarria M.A., Barrantes Barrantes E.A., Helmick E.E., Bartlett C.R., 2023. A new species of planthopper in the genus Shellenius (Hemiptera: Fulgoroidea: Derbidae) from palms in Costa Rica. Zootaxa 5306: 571–585. DOI: https://doi.org/10.11646/zootaxa.5306.5.5
- Bertaccini A., Contaldo N., Feduzi G., Andeme A.M.E., Yankey E.N., Rovesti L., 2023. Molecular identification of ‘Candidatus phytoplasma palmicola’ associated with coconut lethal yellowing in Equatorial Guinea. Annals of Applied Biology https://doi.org/10.1111/aab.12854. DOI: https://doi.org/10.1111/aab.12854
- Boyle P., Su E.L, Rochon A., Shearer H.L., Murmu J., Despres C., 2009. The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 21: 3700-3713. DOI: https://doi.org/10.1105/tpc.109.069971
- Canet J.V., Dobon A., Roig A., Tornero P., 2010. Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant Cell and Environment https://doi.org/10.1111/j.1365-3040.2010.02194.x. DOI: https://doi.org/10.1111/j.1365-3040.2010.02194.x
- Cao X., Fan G., Dong Y., Zhao Z., Deng M., Liu W., 2017. Proteome profiling of Paulownia seedlings infected with phytoplasma. Frontiers in Plant Science https://doi.org/10.3389/fpls.2017.00342. DOI: https://doi.org/10.3389/fpls.2017.00342
- Ceramic-Zagorac P., Hiruki C., 1996. Comparative molecular studies on aster yellows phytoplasmas. Acta Horticulturae 377: 266–276. DOI: https://doi.org/10.17660/ActaHortic.1996.432.32
- Cheng H., Yang H., Zhang D., Gai J., Yu D., 2010. Polymorphisms of soybean isoflavone synthase and flavanone 3‐hydroxylase genes are associated with soybean mosaic virus resistance. Molecular Breeding 25: 13–24. DOI: https://doi.org/10.1007/s11032-009-9305-8
- De Silva P.R., Perera C.N., Bahder B.W., Attanayake R.N., 2023. Nested PCR-based rapid detection of phytoplasma leaf wilt disease of coconut in Sri Lanka and systemic movement of the pathogen. Pathogens 12: 294. DOI: https://doi.org/10.3390/pathogens12020294
- Deng S.J., Hiruki C., 1991. Ampllification of 16s rRNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods 14: 53–61. DOI: https://doi.org/10.1016/0167-7012(91)90007-D
- Dobón A., Canet J.V., Perales L., Tornero P., 2011. Quantitative genetic analysis of salicylic acid perception in Arabidopsis. Planta 234: 671–684. DOI: https://doi.org/10.1007/s00425-011-1436-6
- Dollet M., Fabre S., Beaumont M., Barnabe C., Namaliu Y., Bourdeix R., 2022. The phytoplasma associated with Bogia coconut syndrome in Papua New Guinea is a new phytoplasma in the group of the lethal yellowing syndromes (LYTS) of coconut and other palms. Tropical Plant Pathology 47: 530–552. DOI: https://doi.org/10.1007/s40858-022-00494-0
- Dollet M., Fidelis E.G., Dos Passos E., Da Silva F., Aberlenc H.P, Bartlett C.R., 2020. Derbid planthoppers (Hemiptera: Fulgoroidea: Derbidae) associated with coconut and oil palm in Brazil. Neotropical Entomology 49: 722–738. DOI: https://doi.org/10.1007/s13744-020-00788-5
- Fernández-Barrera M., Córdova-Lara I., Chan-Rodríguez J.L., Castillo-Vera A., Blanco-Rodríguez E., Saenz-Carbonell L., 2024. Detection of 16SrIV-A phytoplasma DNA in Colpoptera sp. (Hemiptera: Nogodinidae) insects in Yucatan Peninsula, Mexico. Brazilian Journal of Biology 84: 1–8. DOI: https://doi.org/10.1590/1519-6984.257470
- Geng M., Ji J., Regnier F.E. 2000. Signature-peptide approach to detecting proteins in complex mixtures. Journal of Chromatography A 870: 295–313. DOI: https://doi.org/10.1016/S0021-9673(99)00951-6
- Gundersen D.E., Lee I-M., 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterrania 35: 114–151.
- Gurr G.M., Johnson A.C., Ash G.J, Wilson B.A.L., Ero M.M., You M.S., 2016. Coconut lethal yellowing diseases: A phytoplasma threat to palms of global economic and social significance. Frontiers in Plant Science 7: 1–21. DOI: https://doi.org/10.3389/fpls.2016.01521
- Hibben C.R., Lewis C.A., Castello J.D., 1986. Mycoplasma like organisms, cause lilac witches’ broom. Plant Disease 70: 342–345. DOI: https://doi.org/10.1094/PD-70-342
- Hoshikawa K., Endo S., Mizuniwa S., Makabe S., Takahashi H., Nakamura I., 2012. Transgenic tobacco plants expressing endo-β-mannanase gene from deep-sea Bacillus sp. JAMB-602 strain confer enhanced resistance against fungal pathogen (Fusarium oxysporum). Plant Biotechnology Reports 6: 243–250. https://doi.org/10.1007/s11816-012-0219-2. DOI: https://doi.org/10.1007/s11816-012-0219-2
- Humphries A.R., Ascunce M.S., Goss E.M., Helmick E.E., Bartlett C.R., Bahder B.W., 2021. Genetic variability of Haplaxius crudus, based on the 5′ region of the cytochrome C oxidase subunit I gene, sheds light on epidemiology of palm lethal decline phytoplasmas. PhytoFrontiers 1: 127–134. DOI: https://doi.org/10.1094/PHYTOFR-12-20-0048-R
- Ishihara A., Nakao T., Mashimo Y., Murai M., Ichimaru N., Miyagawa H., 2011. Probing the role of tryptophan-derived secondary metabolism in defense responses against Bipolaris oryzae infection in rice leaves by a suicide substrate of tryptophan decarboxylase. Phytochemistry 72: 7–13. DOI: https://doi.org/10.1016/j.phytochem.2010.11.001
- Jespersen M.C., Peters B., Nielsen M., Marcatili P., 2017. BepiPred-2.0: improving sequence based B-cell epitope prediction using conformational epitopes. Nucleic Acid Research 45: W24–W29. https://doi.org/10.1093/nar/gkx346. DOI: https://doi.org/10.1093/nar/gkx346
- Ji X., Gai Y., Zheng C., Mu Z., 2009. Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics 9: 5328–5339. DOI: https://doi.org/10.1002/pmic.200900012
- Kanatiwela-de Silva C., Damayanthi M., de Silva N., Wijesekera R., Dickinson M., Udagama P., 2019. Immunological detection of the Weligama coconut leaf wilt disease associated phytoplasma: Development and validation of a polyclonal antibody based indirect ELISA. PLoS One 14: 1–15. DOI: https://doi.org/10.1371/journal.pone.0214983
- Kasuga T., Hayden K.J., Eyre C.A., Croucher P.J.P., Schechter S., Garbelotto M., 2021. Innate resistance and phosphite treatment affect both the pathogen’s and host’s transcriptomes in the Tanoak – Phytophora ramorum pathosystem. Journal of Fungi 7: 198. https://doi.org/10.3390/jof7030198. DOI: https://doi.org/10.3390/jof7030198
- Kolaskar A.S., Tongaonkar P.C., 1990. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters 276: 172–174. DOI: https://doi.org/10.1016/0014-5793(90)80535-Q
- Lee I–M., Bertaccini A., Vibio M., Gundersen D.E., 1995. Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology 85: 728–735. DOI: https://doi.org/10.1094/Phyto-85-728
- Leetanasaksakul K., Roytrakul S., Phaonakrop N., Kittisenachai S., Thaisakun S., Soulard L., 2022. Discovery of potential protein biomarkers associated with sugarcane white leaf disease susceptibility using a comparative proteomic approach. Peer J 10: e12740. DOI: https://doi.org/10.7717/peerj.12740
- Luge T., Kube M., Freiwald A., Meierhofer D., Seeműller E., Sauer S., 2014. Transcriptomics assisted proteomic analysis of Nicotiana occidentalis infected by ‘Candidatus Phytoplasma mali’ strain AT. Proteomics 14: 1882–1889. DOI: https://doi.org/10.1002/pmic.201300551
- Manimekalai R., Nair S., Soumya V.P., Roshna O.M., Thomas G.V., 2011. Real-time PCR technique-based detection of coconut root (wilt) phytoplasma. Current Science 101: 1209–1212.
- Manimekalai R., Soumya V.P., Sathish Kumar R., Selvarajan R., Reddy K., Baranwal V.K., 2010. Molecular detection of 16SrXI group phytoplasma associated with root (wilt) disease of coconut (Cocos nucifera) in India. Plant Disease 94: 636–636. DOI: https://doi.org/10.1094/PDIS-94-5-0636B
- Mardi M., Karimi Farsad L., Gharechahi J., Salekdeh G.H., 2015. In-Depth Transcriptome sequencing of Mexican lime trees infected with Candidatus phytoplasma aurantifolia. PLoS One 10: e0130425. https://doi.org/10.1371/journal.pone.0130425. DOI: https://doi.org/10.1371/journal.pone.0130425
- Margaria P., Ferrandino A., Caciagli P., Kedrina O., Schubert A., Palmano S., 2014. Metabolic and transcript analysis of the flavonoid pathway in diseased and recovered N ebbiolo and B arbera grapevines (Vitis vinifera L.) following infection by F lavescence dorée phytoplasma. Plant Cell and Environment 37: 2183–2200. https://doi.org/10.1111/pce.12332. DOI: https://doi.org/10.1111/pce.12332
- Margaria P., Palmano S., 2011. Response of the Vitis vinifera L. cv. ‘Nebbiolo’ proteome to “flavescence dorée” phytoplasma infection. Proteomics 11: 212–224. DOI: https://doi.org/10.1002/pmic.201000409
- Miyazaki A., Shigaki T., Koinuma H., Iwabuchi N., Rauka G.B., Namba S., 2018. ‘Candidatus phytoplasma noviguineense’, a novel taxon associated with bogia coconut syndrome and banana wilt disease on the island of New Guinea. International Journal of Systematic and Evolutionary Microbiology 68: 170–175. DOI: https://doi.org/10.1099/ijsem.0.002480
- Monavarfeshani A., Mirzaei M., Sarhadi E., Amirkhani A., Nekouei M.K., Salekdeh G.H., 2013. Shotgun proteomic analysis of the Mexican Lime tree infected with ‘Candidatus Phytoplasma aurantifolia’. Journal of Proteome Research 12: 785–795. DOI: https://doi.org/10.1021/pr300865t
- Nair S., Manimekalai R., Raj P.G., Hedge V., 2016. Loop mediated isothermal amplification (LAMP) assay for detection of coconut root wilt disease and arecanut yellow leaf disease phytoplasma. World Journal of Microbiology and Biotechnology 32: 108. DOI: https://doi.org/10.1007/s11274-016-2078-4
- Navratil M., Safarova D., Valova P., Franova J., Simkova M., 2009. Phytoplasma associated with witches’-broom disease of Ulmus minor MILL. in the Czech Republic: Electron microscopy and molecular characterization. Folia Microbiologia 54: 37–42. DOI: https://doi.org/10.1007/s12223-009-0006-9
- Nejat N., Cahill D.M., Vadamalai G., Ziemann M., Rookes J., Naderali N., 2015. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Molecular Genetics and Genomics 290: 1899–1910. https://doi.org/10.1007/s00438-015-1046-2. DOI: https://doi.org/10.1007/s00438-015-1046-2
- Nic-Matos G., Narváez M., Peraza-Echeverría S., Saenz L., Oropeza C., 2017. Molecular cloning of two novel NPR1 homologue genes in coconut palm and analysis of their expression in response to the plant defense hormone salicylic acid. Genes and Genomics 39: 1007–1019.https://doi.org/10.1007/s13258-017-0566-z. DOI: https://doi.org/10.1007/s13258-017-0566-z
- Paredes-Tomás C., Luis-Pantoja M., Rodríguez-Tapia J.L., Bertaccini A., 2023. Haplaxius crudus transmission of ‘Candidatus Phytoplasma palmae’ to coconut seedlings in Cuba. Phytopathogenic Mollicutes 13: 151–156. DOI: https://doi.org/10.5958/2249-4677.2023.00078.6
- Rajesh M.K., Rachana K.E., Kulkarni K., Sahu B.B., Thomas R.J., Karun A., 2018. Comparative transcriptome profiling of healthy and diseased Chowghat Green dwarf coconut palms from root (wilt) disease hot spots. European Journal of Plant Pathology 151: 173–193. DOI: https://doi.org/10.1007/s10658-017-1365-8
- Ramjegathesh R., Karthikeyan G., Balachandar D., Ramaraju K., Rajendran L., Samiyappan R., 2019. Nested and TaqMan ® probe based quantitative PCR for the diagnosis of ‘Ca. Phytoplasma’ in coconut palms. Molecular Biology Reports 46: 479–488. DOI: https://doi.org/10.1007/s11033-018-4500-5
- Salmon M., Thimmappa R.B., Minto R.E., Melton R.E., Hughes R.K., Osbourn A., 2016. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases. Proceedings of the National Academy of Sciences USA 113: E4407–4414. https://doi.org/10.1073/pnas.1605509113. DOI: https://doi.org/10.1073/pnas.1605509113
- Sasikala M., Chithra K.R., Solomon J.J., Rajeev G., 2001. Development of DAC Indirect ELISA for the rapid detection of coconut root (wilt) disease. Coconut Research and Development Journal 17: 34. DOI: https://doi.org/10.37833/cord.v17i02.350
- Sasikala M., Prakash V.R., Sapna V.P., Mayilvaganan M., Nair L.S., 2005. Refinement of ELISA and its use in early detection of coconut root (wilt) disease. Coconut Research and Development Journal 21: 37–44. DOI: https://doi.org/10.37833/cord.v21i02.411
- Schneider B., Seemüller E., Smart C.D., Kirkpatrick B.C., 1995. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or Phytoplasmas. In: Razin S., Tully J.G., Eds., Molecular and Diagnostic Procedures in Mycoplasmology, Vol. I. Academic Press, San Diego, 369–380. http://dx.doi.org/10.1016/B978-012583805-4/50040-6 DOI: https://doi.org/10.1016/B978-012583805-4/50040-6
- Solomon J.J., Govindankutty M.P., Nienhaus F., 1983. Association of mycoplasma-like organisms with the coconut root (wilt) disease in India. Journal of Plant Diseases and Protection 90: 295–297.
- Solomon J.J., Nair C.P.R., Srinivasan N., Gunasekaran M., Sasikala M., 1999. Coconut root (wilt) – The malady and remedy. Journal of Plantation Crops 27: 71–92.
- Soto N., Humphries A.R., Mou D.F., Helmick E.E., Glover J.P., Bahder B.W., 2020. Effect of oxytetracycline-hydrochloride on phytoplasma titer and symptom progression of the 16SrIV-D phytoplasma in cabbage palms from Florida. Plant Disease 104: 2330–2337. DOI: https://doi.org/10.1094/PDIS-01-20-0029-RE
- Thelly T.M., Mohankumar C., 2001. H+-ATPase as a biochemical marker for early detection of root (wilt) disease in coconut palms (Cocos nucifera L.). Indian Journal of Biochemistry and Biophysics 38: 199–202.
- Thomas J.C., Adams D.G., Nessler C.L., Brown J.K. and Bohnert H.J., 1995. Tryptophan decarboxylase, tryptamine and reproduction of the whitefly (Bemisia tabaci). Plant Physiology 109: 717–720. DOI: https://doi.org/10.1104/pp.109.2.717
- Van Damme M., Huibers R. P., Elberse J., Van den Ackerveken G., 2008. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. The Plant Journal. https://doi.org/10.1111/j.1365-313X.2008.03427.x. DOI: https://doi.org/10.1111/j.1365-313X.2008.03427.x
- Wang Z., Tian X., Zhao Q., Liu Z., Li X., Bu Q., 2018. The E3 ligase DROUGHT HYPERSENSITIVE negatively regulates cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in rice. Plant Cell 30: 228–244. https://doi.org/10.1105/tpc.17.00823. DOI: https://doi.org/10.1105/tpc.17.00823
- Wei Z., Wang Z., Li X., Zhao Z., Deng M., Dong Y., Fan G., 2017. Comparative proteomic analysis of Paulownia fortunei response to phytoplasma infection with dimethyl sulfate treatment. International Journal of Genomics 1–11. 10. https://doi.org/1155/2017/6542075. DOI: https://doi.org/10.1155/2017/6542075
- Zhang S.B., Zhang W.J., Li N., Zhai H-C., Lv Y-Y., Cai J-P., 2020. Functional expression and characterization of an endo-1,4-β-mannosidase from Triticum aestivum in Pichia pastoris. Biologia 75: 2073–2081. https://doi.org/10.2478/s11756-020-00525-8. DOI: https://doi.org/10.2478/s11756-020-00525-8
