Outbreak of Xylella fastidiosa subsp. pauca ST53 affecting wild and cultivated olive trees on the island of Mallorca, Spain
Published 2024-12-30
Keywords
- Genetic diversity,
- olive quick decline syndrome,
- invasive pathogens,
- MultiLocus Sequence Typing (MLST),
- disease outbreak
How to Cite
Copyright (c) 2024 Eduardo MORALEJO, Bàrbara QUETGLAS, Marina MONTESINOS, Francisco ADROVER, Diego OLMO, Alicia NIETO, Ana PEDROSA, Marta LÓPEZ, Andreu JUAN, Ester MARCO-NOALES, Inmaculada NAVARRO-HERRERO, Silvia BARBÉ, María Pilar VELASCO-AMO, Concepción OLIVARES-GARCÍA, Blanca B. LANDA
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The Balearic Islands have emerged as a hotspot for the invasive plant pathogen Xylella fastidiosa (Xf). Since 2016, the Xf subsp. fastidiosa and multiplex have been detected causing almond leaf scorch and Pierce’s disease on the island of Mallorca, Spain, and a new sequence type (ST), ST80, of subsp. pauca is infecting wild and cultivated olive trees on the island of Ibiza. In addition, Xf subsp. multiplex ST81 is widespread in scrublands, and causes mild, sub-lethal dieback of wild olive trees in Menorca and Mallorca. A new outbreak is here reported of the Xf subsp. pauca in the municipality of Sencelles in the centre of Mallorca island. In early 2024, dying patches were observed in wild olive trees (Olea europaea var. europaea subsp. sylvestris). Samples from these trees were Xf-positive in different qPCR tests, and the pathogen was subsequently identified as belonging to ST53 of subsp. pauca, the same genetic variant responsible for olive quick decline syndrome in Apulia, Italy. More than 184 plants of eight hosts have tested positive for subsp. pauca within a demarcation zone of approx. 1 km radius. The identified host species include 124 wild olive trees, 40 cultivated olive trees, nine Rhamnus alaternus, six Nerium oleander, two Lavandula angustifolia, one Laurus nobilis, one Lavandula dentata and one Polygala myrtifolia. Of particular concern is detection of co-infections by Xf subsp. subsp. pauca and multiplex on plants from natural settings (wild olives, L. dentata and R. alaternus), posing potential risk of genetic recombinations. Intensive surveys are being carried out to contain the spread of ST53, and infected plants have been destroyed in the demarcated zone.
Downloads
Metrics
References
- Carvalho-Luis C., Rodrigues J.M., Martins L.M., 2022. Dispersion of the bacterium Xylella fastidiosa in Portugal. Journal of Agricultural Science and Technology. A 12(1): 35–41. https://doi.org/10.17265/2161-6256/2022.01.005
- Cesbron S., Dupas E., Beaurepère Q., Briand M., Montes-Borrego M., Velasco-Amo MdP., Landa B.B., Jacques M-A., 2020. Development of a nested-MultiLocus Sequence Typing approach for a highly sensitive and specific identification of Xylella fastidiosa subspecies directly from plant samples. Agronomy 10(8): 1099. https://doi.org/10.3390/agronomy10081099
- Denancé N., Legendre B., Briand M., Olivier V., de Boisseson C., … Jacques M.A., 2017. Several subspecies and sequence types are associated with the emergence of Xylella Fastidiosa in natural settings in France. Plant Pathology 66(7): 1054–1064. https://doi.org/10.1111/ppa.12695
- Dupas E., Briand M., Jacques M.A., Cesbron S., 2019. Novel tetraplex quantitative PCR assays for simultaneous detection and identification of Xylella fastidiosa subspecies in plant tissues. Frontiers in Plant Science 10: 1732. https://doi.org/10.3389/fpls.2019.01732
- EPPO (European Plant Protection Organization), 2023. PM 7/24 (5) Xylella fastidiosa. EPPO/OEPP Bulletin 53(2): 205–276. https://doi.org/10.1111/epp.12923
- European Commission, 2016. Regulation (EU) 2016/2031 of the European Parliament of the Council of 26 October 2016 on protective measures against pests of plants, amending Regulations (EU) No 228/2013, (EU) No 652/2014 and (EU) No 1143/2014 of the European Parliament and of the Council and repealing Council Directives 69/464/EEC, 74/647/EEC, 93/85/EEC, 98/57/EC, 2000/29/EC, 2006/91/EC and 2007/33/EC. Official Journal of the European Union L 317: 4–104. http://data.europa.eu/eli/reg/2016/2031/oj/eng
- Giménez-Romero À., Moralejo E., Matías M.A., 2023. A compartmental model for Xylella fastidiosa diseases with explicit vector seasonal dynamics. Phytopathology 113(9): 1686–1696. https://doi.org/10.1094/PHYTO-11-22-0428-V
- Giménez-Romero À., Iturbide M., Moralejo E., 2024. Global warming significantly increases the risk of Pierce’s disease epidemics in European vineyards. Scientific Reports 14: 9648. https://doi.org/10.1038/s41598-024-59947-y
- Harper S.J., Ward L.I., Clover G.R.G., 2010. Development of LAMP and real-Time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field Applications. Phytopathology 100(12): 1282–1288. https://doi.org/10.1094/PHYTO-06-10-0168
- Hodgetts J., Glover R., Cole J., Hall J., Boonham N., 2021. Genomics informed design of a suite of real‐time PCR assays for the specific detection of each Xylella fastidiosa subspecies. Journal of Applied Microbiology 131(2): 855–872. https://doi.org/10.1111/jam.14903
- Jeger M., Bragard C., 2019. The epidemiology of Xylella fastidiosa; A perspective on current knowledge and framework to investigate plant host–vector–pathogen interactions. Phytopathology 109: 200–209. https://doi.org/10.1094/PHYTO-07-18-0239-FI
- Landa B.B., Castillo A.I., Giampetruzzi A., Kahn A., Román-Écija M, …Almeida R-P.P., 2020. Emergence of a plant pathogen in Europe associated with multiple intercontinental introductions. Applied and Environmental Microbiology 86: e01521-19. https://doi.org/10.1128/AEM.01521-19
- Moralejo E., Borràs D., Gomila M., Montesinos M., Adrover F., … Landa B. B., 2019. Insights into the epidemiology of Pierce’s disease in vineyards of Mallorca, Spain. Plant Patholology 68: 1458–1471. https://doi.org/10.1111/ppa.13076
- Moralejo E., Gomila M., Montesinos M., Borràs D., Pascual A., … Olmo D., 2020. Phylogenetic inference enables reconstruction of a long-overlooked outbreak of almond leaf scorch disease (Xylella fastidiosa) in Europe. Communications Biology 3: 560. https://doi.org/10.1038/s42003-020-01284-7
- Olmo D., Nieto A., Adrover F., Urbano A., Beidas O., … Landa B.B., 2017. First detection of Xylella fastidiosa infecting cherry (Prunus avium) and Polygala myrtifolia plants, in Mallorca Island, Spain. Plant Disease 101(10): 1820–1820. https://doi.org/10.1094/PDIS-04-17-0590-PDN
- Olmo D., Nieto A., Borràs D., Montesinos M., Adrover F., … Landa B.B., 2021. Landscape epidemiology of Xylella fastidiosa in the Balearic Islands. Agronomy 11(3): 473. https://doi.org/10.3390/agronomy11030473
- Potnis N., Kandel P.P., Merfa M.V., Retchless A.C., Parker J.K., … De La Fuente L., 2019. Patterns of inter-and intrasubspecific homologous recombination inform eco-evolutionary dynamics of Xylella fastidiosa. The ISME journal 13(9): 2319–2333. https://doi.org/10.1038/s41396-019-0423-y
- Saponari M., Boscia D., Nigro F., Martelli G.P., 2013. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). Journal of Plant Pathology 95(3): 668. https://doi.org/10.4454/JPP.V95I3.035
- Velasco-Amo M.P., Arias-Giraldo L.F., Marín Sanz J.A., Fernández Soria V.M., Imperial J., Landa B.B., 2021. Assessing genome-wide diversity in Xylella fastidiosa through target enrichment via hybridization-based capture from natural host plant and insect samples. In: Book of Abstracts of the 3rd European conference on Xylella fastidiosa and XF-ACTORS final meeting, 61, April 26-30, On-line event, 2021.
- Velasco-Amo M.P., Arias-Giraldo L.F., Olivares-García C., Denancé N., Jacques M.-A., Landa, B.B., 2022. Use of traC Gene to type the incidence and distribution of pXFAS_5235 plasmid-bearing strains of Xylella fastidiosa subsp. fastidiosa ST1 in Spain. Plants (Basel) 11(12):1562. https://www.mdpi.com/2223-7747/11/12/1562. Erratum in: Plants (Basel). 2024. 13(2): 200. https://doi.org/10.3390/plants13020200.
- White S.M., Navas‐Cortés J.A., Bullock J.M., Boscia D., Chapman D.S., 2020. Estimating the epidemiology of emerging Xylella fastidiosa outbreaks in olives. Plant Pathology 69(8): 1403–1413. https://doi.org/10.1111/ppa.13238
- Yuan X., Morano L., Bromley R., Spring-Pearson S., Stouthamer R., Nunney, L., 2010. Multilocus Sequence Typing of Xylella fastidiosa causing Pierce’s disease and oleander leaf scorch in the United States. Phytopathology 100(6): 601–611. https://doi.org/10.1094/PHYTO-100-6-0601