Vol. 64 No. 1 (2025)
Articles

Microbiota dynamic communities in sweet orange infected by “huanglongbing” in Iran: Microbiota Associated with Sweet Orange Infected by Huanglongbing in Iran

Shiva SAFARPOUR KAPOURCHALI
Department of Plant Protection, Islamic Azad University, Varamin, Pishva Branch, Varamin, Iran
Mojdeh MALEKI
Department of Plant Pathology, Islamic Azad University, Varamin, Pishva Branch, Varamin, Iran
Ali ALIZADEH ALIABADI
Iranian Research Institute of Plant Protection, AREEO, Tehran, Iran
Saeideh RAJAEE
The National Institute of Genetic Engineering and Biotechnology, NIGEB, Tehran, Iran
Mohammad MEHDI FAGHIHI
Plant Protection Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Zarghan, Iran
Mehdi NASR ESFAHANI
Plant Protection Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran

Published 2025-05-14

Keywords

  • ‘Candidatus Liberibacter’ species,
  • plant microbiota,
  • Valencia sweet orange

How to Cite

[1]
S. SAFARPOUR KAPOURCHALI, M. MALEKI, A. ALIZADEH ALIABADI, S. RAJAEE, M. MEHDI FAGHIHI, and M. NASR ESFAHANI, “Microbiota dynamic communities in sweet orange infected by ‘huanglongbing’ in Iran: Microbiota Associated with Sweet Orange Infected by Huanglongbing in Iran”, Phytopathol. Mediterr., vol. 64, no. 1, pp. 129–143, May 2025.

Abstract

“Huanglongbing”-(HLB) or citrus-greening is one of the most serious citrus diseases worldwide. This study aimed to investigate the bacterial-communities associated with HLB-symptomatic sweet orange trees (Citrus sinensis) from different geographical regions in southern Iran. The 16S rRNA gene amplicon metagenomics sequencing of DNA extracted from the midrib and petiole tissues of symptomatic plants confirmed that the ‘Candidatus Liberibacter asiaticus’, was spread along the citrus-plantation regions in southern Iran, including Kerman, Sistan and Baluchistan, Fars, Hormozgan, and Khuzestan Provinces. The frequency of Operational Taxonomic Units (OTUs) related to ‘Ca. L. asiaticus’ was remarkable in the HLB symptomatic tree in the Fars region. No OTUs of ‘Ca. Liberibacter’ or ‘Ca. Phytoplasma’ were detected in the asymptomatic samples in the Kerman region. However, in asymptomatic materials representatives of the class Bacilli, including Lactobacillus spp. and Bacillus spp., showed 12- and 4-fold presence compared to the symptomatic samples of Kerman groves. Furthermore, the presence of OTUs belonging to ‘Ca. L. europaeus’ and ‘Ca. Phytoplasma aurantifolia’ was detected in sweet oranges. The simultaneous occurrence of ‘Ca. L. asiaticus’, ‘Ca. L. europaeus’, and ‘Ca. P. aurantifolia’ in HLB symptomatic orange trees in the Fars groves provided worthwhile insights for further research, although their epidemiological role in co-infections remains unknown. Microbial dataset in relation to variables associated with the plant health, defense, and disease helps to understand how these variables shape the citrus microbial community and identify individual that play a role in HLB suppression or promotion.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Ahmed N.A., Petersen F.C., Scheie A., 2009. AI-2/LuxS is involved in increased biofilm formation by Streptococcus intermedius in the presence of antibiotics. Antimicrobial Agents and Chemotherapy 53(10): 4258–4263. https://doi.org/10.1128/AAC.00546-09 DOI: https://doi.org/10.1128/AAC.00546-09
  2. Alizadeh Aliabadi A., Foroutan A., Golmohamadi M., 2010. Occurrence of citrus greening caused by Candidatus Liberibacter asiaticus in Sistan-Baluchestan province. 19th Iranian Plant Protection Congress, 31 July-3 August 2010. Tehran. Iran. p. 525. (in Persian with English summary)
  3. Alizadeh Aliabadi A., Ghasemi A., Salehi M., Faghihi M.M., Forootan A., 2013. Identification and distribution of citrus greening disease in Iran. Approved number: 14-16-16-8802-88001 and Farvast number: 44237 dated 16/04/2013.
  4. Alizadeh A.A., Faghihi M.M., Salehi M., Ghasemi A., 2022. Dynamics of emergence and spread of citrus huanglongbing disease in Iran. Plant Pathology Science 11(2): 11–21. https://doi.org/10.2982/PPS.11.2.11 DOI: https://doi.org/10.52547/pps.11.2.11
  5. Araujo W., Marcon J., Maccheroni W Jr, Elsas JD, Vuurde JWL, et al., 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied Environmental Microbiology 68: 4906–4914. https://doi.org/10.1128/AEM.68.10.4906-4914.2002 DOI: https://doi.org/10.1128/AEM.68.10.4906-4914.2002
  6. Arratia-Castro A.A., Santos-Cervantes M.E., Arce-Leal Á.P., et al., 2016. Detection and quantification of ‘Candidatus Phytoplasma asterisʼ and ‘Candidatus Liberibacter asiaticusʼ at early and late stages of Huanglongbing disease development. Canadian Journal of Plant Pathology 38(4): 411–421. https://doi.org/10.1080/07060661.2016.1243586 DOI: https://doi.org/10.1080/07060661.2016.1243586
  7. Bazany K.E, Delgado‐Baquerzo M, Thompson A, Wang J‐T, Otto K, Adair R.C., et al. 2022. Management induce shifts in rhizosphere bacterial communities contribute to the control of pathogen causing citrus greenin disease. Journal of Sustainable Agriculture and Environment 1: 275–286. https://doi.org/10.1002/sae2.12029 DOI: https://doi.org/10.1002/sae2.12029
  8. Bendix C., Lewis J.D., 2018. The enemy within: phloem‐limited pathogens. Molecular Plant Pathology 19: 238–254. https://doi.org/10.1111/mpp.12526 DOI: https://doi.org/10.1111/mpp.12526
  9. Blaustein R.A., Lorca G.L., Meyer J.L., Gonzalez C.F., Teplitski M., 2017. Defining the core citrus leaf- and root-associated microbiota: Factors associated with community structure and implications for managing huanglongbing (citrus greening) disease. Applied Environmental Microbiology 83: e00210-17. https://doi.org/10.1128/AEM.00210-17 DOI: https://doi.org/10.1128/AEM.00210-17
  10. Bodenhausen N., Horton M.W., Bergelson J., 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PloS One 8(2): e56329. https://doi.org/10.1371/journal.pone.0056329 DOI: https://doi.org/10.1371/journal.pone.0056329
  11. Bolyen E., Rideout J.R., Dillon M.R., et al., 2019. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science (2167-9843). Nature Biotechnology 37: 852–857. https://doi.org/10.1038/s41587-019-0209-9 DOI: https://doi.org/10.1038/s41587-019-0209-9
  12. Bosco D., D’Amelio R., Weintraub P., Jones P., 2009. Transmission specificity and competition of multiple phytoplasmas in the insect vector. Phytoplasmas: Genomes, Plant Hosts and Vectors, 293–308. https://doi.org/10.1079/9781845935306.02 DOI: https://doi.org/10.1079/9781845935306.0293
  13. Bové J.M., 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology 88: 7–37. https://doi.org/10.4454/jpp.v88i1.828
  14. Camerota C., Raddadi N., Pizzinat A., … Alma A., 2012. Incidence of ‘Candidatus Liberibacter europaeus’ and phytoplasmas in Cacopsylla species and their host plants. Phytoparasitica 40(3): 213–221. https://doi.org/10.1007/s12600-012-0225-5 DOI: https://doi.org/10.1007/s12600-012-0225-5
  15. Cochran L., Samadi, M., 1976. Distribution of stubborn disease in Iran. International Organization of Citrus Virologists Conference Proceedings (1957–2010). https://doi.org/10.5070/C53tn9w703 DOI: https://doi.org/10.5070/C53TN9W703
  16. Crotti E., Balloi A., Hamdi C., … Daffonchio D., 2012. Microbial symbionts: a resource for the management of insect‐related problems. Microbial Biotechnology 5(3): 307–317. https://doi.org/10.1111/j.1751-7915.2011.00312.x DOI: https://doi.org/10.1111/j.1751-7915.2011.00312.x
  17. Dala-Paula B.M., Plotto A., Bai J., Manthey J.A., Baldwin E.A., … Gloria M.B.A., 2019. Effect of huanglongbing or greening disease on orange juice quality, a review. Frontiers in Plant Science 9: 1976. https://doi.org/10.3389/fpls.2018.01976 DOI: https://doi.org/10.3389/fpls.2018.01976
  18. da Graça J.V., 1991. Citrus greening disease. Annual Review of Phytopathology 29: 109–136. https://doi.org/10.1146/annurev.py.29.090191.000545 DOI: https://doi.org/10.1146/annurev.py.29.090191.000545
  19. da Graça J.V., 2008. Biology, history and world status of Huanglongbing. Texas A & M University-Kingsville, Citrus Center, Weslaco TX 78596, USA.
  20. Daranas N., Roselló G., Cabrefiga J., Donati I., 2019. Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad‐spectrum activity. Annals of Applied Biology, 174(1): 92–105. https://doi.org/10.1111/aab.12476 DOI: https://doi.org/10.1111/aab.12476
  21. Dominguez J.; Jayachandran K.; Stover E.; Krystel J.; Shetty K.G., 2023. Endophytes and plant extracts as potential antimicrobial agents against ‘Candidatus Liberibacter asiaticus’, causal agent of huanglongbing. Microorganisms 11: 1529. https://doi.org/10.3390/microorganisms11061529 DOI: https://doi.org/10.3390/microorganisms11061529
  22. Faghihi M.M., 2018. Investigation of association of phloem-limited prokaryotes with Siyahoo tangerine trees showing misshapen and inverted color change symptoms in fruit. 23rd Iranian Plant Protection Congress. 27–30 August 2018, Gorgan. IRAN.
  23. Faghihi M., Salehi M., Bagheri A., Izadpanah K., 2009. First report of citrus huanglongbing disease on orange in Iran. Plant Pathology 58(4): 793–793. https://doi.org/10.1111/j.1365-3059.2009.02051.x DOI: https://doi.org/10.1111/j.1365-3059.2009.02051.x
  24. Faghihi M.M., Taghavi S.M., Salehi M., Golmohammadi M., 2016. First report of huanglongbing disease on Mexican lime in iran. In: Proceedings of the 20th International Organization of Citrus Virologist (IOCV) conference, April 10–15, 2016, Chongqing, China. p. 45.
  25. Fitzpatrick C.R.; Copeland J.; Wang P.W.; Guttman D.S.; Kotanen P.M.; Johnson M.T.J., 2018. Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences USA. 115, E1157–E1165. https://doi.org/10.1073/pnas.1717617115 DOI: https://doi.org/10.1073/pnas.1717617115
  26. Fujiwara K., Iwanami T., Fujikawa T., 2018. Alterations of ‘Candidatus Liberibacter asiaticus’-associated microbiota decrease survival of Ca. L. asiaticus in in vitro assays. Frontiers in Microbiology 9: 3089. https://doi.org/10.3389/fmicb.2018.03089 DOI: https://doi.org/10.3389/fmicb.2018.03089
  27. Ginnan N.A., Dang T., Bodaghi S., … Borneman J., 2018. Bacterial and fungal next generation sequencing datasets and metadata from citrus infected with ‘Candidatus Liberibacter asiaticus’. Phytobiomes 2(2): 64–70. https://doi.org/10.1094/PBIOMES-08-17-0032-A DOI: https://doi.org/10.1094/PBIOMES-08-17-0032-A
  28. Grady K.L., Sorensen J.W., Stopnisek N., Guittar J., Shade A., 2019. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nature Communications 10: 4135. https://doi.org/10.1038/s41467-019-11974-4 DOI: https://doi.org/10.1038/s41467-019-11974-4
  29. Hocquellet A., Toorawa P., Bové J.M., Garnier M., 1999. Detection and identification of the two Candidatus Liberobacter’ species associated with citrus huanglongbing by PCR amplification of ribosomal protein genes of the b operon. Molecular and Cellular Probes 13: 373–379. https://doi.org/10.1006/mcpr.1999.0263 DOI: https://doi.org/10.1006/mcpr.1999.0263
  30. Hu W., Wang X., Zhou Y., Li Z., Tang K., Zhou C., 2011. Diversity of the omp gene in Candidatus Liberibacter asiaticus in China. Journal of Plant Pathology 93(1): 211–214. https://doi.org/10.4454/jpp.v93i1.294
  31. Klindworth A., Pruesse E., Schweer T., … Glöckner F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1): e1. https://doi.org/10.1093/nar/gks808 DOI: https://doi.org/10.1093/nar/gks808
  32. Križanac I., Mikec I., Budinščak Ž., Musić M.Š., Škorić D., 2010. Diversity of phytoplasmas infecting fruit trees and their vectors in Croatia. Journal of Plant Diseases and Protection 117(5): 206–213. https://doi.org/10.1007/BF03356362 DOI: https://doi.org/10.1007/BF03356362
  33. Kumar Ghosh D., Bhose S., Motghare M., Gowa S., 2015. Genetic diversity of the Indian populations of ‘Candidatus Liberibacter asiaticus’ based on the tandem repeat variability in a genomic locus. Phytopathology. 105(8):1043–1049. https://doi.org/10.1094/PHYTO-09-14-0253-R DOI: https://doi.org/10.1094/PHYTO-09-14-0253-R
  34. Kumar S., Stecher G., Li M., Knyaz C., Tamura K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096 DOI: https://doi.org/10.1093/molbev/msy096
  35. Limayem A., Martin E.M., Shankar S., 2024. Study on the citrus greening disease: Current challenges and novel therapies. Microbial Pathogenesis 192: 106688. https://doi.org/10.1016/j.micpath.2024.106688 DOI: https://doi.org/10.1016/j.micpath.2024.106688
  36. Mendes R., Garbeva P., Raaijmakers J.M., 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37(5): 634–663. https://doi.org/10.1111/1574-6976.12028 DOI: https://doi.org/10.1111/1574-6976.12028
  37. Mohkami A., Sattari R., Lori Z., Ehsani A., Nazemi A., 2011. First report of citrus huanglongbing in the Orzooiyeh region in Kerman province (Orzooiyeh). Iranian Journal of Plant Pathology 47: 105.
  38. Montero Castillo P.M., Díaz A., 2015. Antagonistic action of Lactobacillus spp. against Staphylococcus aureus in cheese from Mompox-Colombia. Revista Facultad Nacional de Agronomía Medellín 68(2): 7721–7727. https://doi.org/10.15446/rfnam.v68n2.50991 DOI: https://doi.org/10.15446/rfnam.v68n2.50991
  39. Monazzah M., Nasr Esfahani M., Tahmasebi S., 2022. Genetic structure and proteomic analysis associated in potato to Rhizoctonia solani AG-3PT-stem canker and black scurf. Physiological and Molecular Plant Pathology 122: 101905. https://doi.org/10.1016/j.pmpp.2022.101905 DOI: https://doi.org/10.1016/j.pmpp.2022.101905
  40. Murray R., Schleifer K., 1994. Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. International Journal of Systematic and Evolutionary Microbiology 44(1): 174–176. https://doi.org/10.1099/00207713-44-1-174 DOI: https://doi.org/10.1099/00207713-44-1-174
  41. Naylor D., Coleman-Derr D., 2018. Drought stress and root-associated bacterial communities. Frontiers in Plant Science 8: 303756. https://doi.org/10.3389/fpls.2017.02223 DOI: https://doi.org/10.3389/fpls.2017.02223
  42. Nicolaisen M., Contaldo N., Makarova O., Paltrinieri S., Bertaccini A., 2011. Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants. Bulletin of Insectology 64: S35–S36.
  43. Ofek M., Hadar Y., Minz D., 2012. Ecology of root colonizing Massilia (Oxalobacteraceae). PloS One 7(7): e40117. https://doi.org/10.1371/journal.pone.0040117 DOI: https://doi.org/10.1371/journal.pone.0040117
  44. Passera, A., Alizadeh, H., Azadvar, M., … Bianco P.A., 2018. Studies of microbiota dynamics reveals association of ‘Candidatus Liberibacter asiaticus’ infection with citrus decline. International Journal of Molecular Sciences 19(6): 1817. https://doi.org/10.3390/ijms19061817 DOI: https://doi.org/10.3390/ijms19061817
  45. Raddadi N., Gonella E., Camerota C., … Alma A., 2011. ‘Candidatus Liberibacter europaeus’ sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri. Environmental Microbiology 13(2): 414–426. https://doi.org/10.1111/j.1462-2920.2010.02347.x DOI: https://doi.org/10.1111/j.1462-2920.2010.02347.x
  46. Rajaei S., Farshi R.S., Jazi M.M., Seyedi S., 2017. Efficient strategies for elimination of phenolic compounds during DNA extraction from Pistacia vera L. Agrivita Journal of Agricultural Science 39(3): 279–287. https://doi.org/10.17503/agrivita.v39i3.734 DOI: https://doi.org/10.17503/agrivita.v39i3.734
  47. Saldaña M.A., Hegde S., Hughes G.L., 2017. Microbial control of arthropod-borne disease. Memórias do Instituto Oswaldo Cruz 112(2): 81–93. https://doi.org/10.1590/0074-02760160373 DOI: https://doi.org/10.1590/0074-02760160373
  48. Salehi M., Rasoulpour R., 2016. First report of ‘Candidatus Liberibacter asiaticus’ associated with huanglongbing in Fars province. Iranian Journal of Plant Pathology 51(4): 563–566.
  49. Salehi M., Faghihi M.M., Khanchezar A., Bagheri A., Izadpanah K., 2012. Distributioin of citrus huanglongbing disease and its vector in southern Iran. Iranian Journal of Plant Pathology 48(2): 195–208.
  50. Satta E., Ramirez A.S., Paltrinieri S., Contaldo N., 2016. Simultaneous detection of mixed ‘Candidatus Phytoplasma asteris’ and ‘Ca. Liberibacter solanacearum’infection in carrot. Phytopathologia Mediterranea 55(3): 401–409. https://doi.org/10.14601/Phytopathol_Mediterr-18683
  51. Safarpour K.S., Alizadeh Aliabadi A., Faghihi M.M., Rajaei S., Maleki M., 2022. Evaluation of ten citrus cultivars’ susceptibility to ‘Candidatus Liberibacter asiaticus’, citrus huanglongbing. Plant Protection 44: 1–18. https://doi.org/10.22055/ppr.2021.17131
  52. Sagaram U.S., DeAngelis, K.M., Trivedi P., Andersen G.L., Lu S.E., Wang N., 2009. Bacterial diversity analysis of huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Applied Environmental and Microbiology 75: 1566–1574. https://doi.org/10.1128/AEM.02404-08 DOI: https://doi.org/10.1128/AEM.02404-08
  53. Swisher K., Munyaneza J., Velásquez-Valle R., 2018. Detection of pathogens associated with psyllids and leafhoppers in Capsicum annuum L. in the Mexican states of Zacatecas, and Michoacan. Plant Disease 102: 146–153. https://doi.org/10.1094/PDIS-05-17-0758-RE DOI: https://doi.org/10.1094/PDIS-05-17-0758-RE
  54. Tamura K., Nei M.,1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3): 512–526. Https://doi.org/10.1093/oxfordjournals.molbev.a040023 DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040023
  55. Tedersoo L., Drenkhan R., Anslan S., Morales-Rodriguez C., Cleary M., 2019. High‐throughput identification and diagnostics of pathogens and pests: overview and practical recommendations. Molecular Ecology Resources 19(1): 47–76. https://doi.org/10.1111/1755-0998.12959 DOI: https://doi.org/10.1111/1755-0998.12959
  56. Thompson S., Fletcher J., Ziebell H., … Pitman, A.R., 2013. First report of ‘Candidatus Liberibacter europaeus’ associated with psyllid infested Scotch broom. New Disease Reports 27(6): 2044-0588.2013. https://doi.org/10.5197/j.2044-0588.2013.027.006 DOI: https://doi.org/10.5197/j.2044-0588.2013.027.006
  57. Trivedi P., Duan Y., Wang N., 2010. Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots. Applied Environmental and Microbiology 76: 3427–3436.https://doi.org/10.1128/AEM.02901-09 DOI: https://doi.org/10.1128/AEM.02901-09
  58. Villechanoux S., Garnier M., Renaudin J., Bovè J.M., 1993. The genome of the non-cultured bacterial-like organism associated with citrus greening disease contains the nusGrplKAJL-rpoBC gene cluster and the gene for a bacteriophage DNA polymerase. Current Microbiology 26:161–166. https://doi.org/10.1007/BF01577372 DOI: https://doi.org/10.1007/BF01577372
  59. Vorholt J.A., 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology 10(12): 828–840. https://doi.org/10.1038/nrmicro2910 DOI: https://doi.org/10.1038/nrmicro2910
  60. Wickham H., 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA. DOI: https://doi.org/10.1007/978-3-319-24277-4_9
  61. Warnes G.R., Bolker B., Bonebakker L., Gentleman R., Huber W., Liaw A., Lumley T., … Galili T., 2020. Gplots: Various R Programming Tools for Plotting Data. Package version 3.0.1.1. Available online: https://CRAN.R-project.org/package=gplots
  62. Xu J., Zhang Y., Zhang P., Trivedi P., Riera N., Wang Y., … Wang N., 2018. The structure and function of the global citrus rhizosphere microbiome. Nature Communications 9: 4894. https://doi.org/10.1038/s41467-018-07343-2 DOI: https://doi.org/10.1038/s41467-018-07343-2
  63. Yang C., Zhong Y., Powell C.A., … Zhang M., 2018. Antimicrobial compounds effective against ‘Candidatus Liberibacter asiaticus’ discovered via graft-based assay in citrus. Scientific Reports 8(1): 1–11. https://doi.org/10.1038/s41598-018-35461-w DOI: https://doi.org/10.1038/s41598-018-35461-w
  64. Zhang M., Powell C.A., Benyon L.S., Zhou H., Duan Y., 2013. Deciphering the bacterial microbiome of citrus plants in response to ‘Candidatus Liberibacter asiaticus’-infection and antibiotic treatments. PLoS One 8(11): e76331. https://doi.org/10.1371/journal.pone.0076331 DOI: https://doi.org/10.1371/journal.pone.0076331