Vol. 60 No. 1 (2021)
Articles

Mating type distribution, genetic diversity and population structure of Ascochyta rabiei, the cause of Ascochyta blight of chickpea in western Iran

Somayeh FARAHANI
Department of Plant Protection, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
Reza TALEBI
Department of Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
Mojdeh MALEKI
Department of Plant Protection, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
Rahim MEHRABI
Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
Homayoun KANOUNI
Kordestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj, Iran
Published May 13, 2021
Keywords
  • ISSR,
  • SSR,
  • population structure,
  • Ascochyta blight,
  • sexual reproduction
How to Cite
[1]
S. FARAHANI, R. TALEBI, M. MALEKI, R. MEHRABI, and H. KANOUNI, “Mating type distribution, genetic diversity and population structure of Ascochyta rabiei, the cause of Ascochyta blight of chickpea in western Iran”, Phytopathol. Mediterr., vol. 60, no. 1, pp. 3-11, May 2021.

Abstract

Ascochyta blight (caused by Ascochyta rabiei) is an important disease of chickpea. Mating type distribution, genetic diversity and population structure A. rabiei isolates from western Iran, using specific matting type primers, and ISSR and SSR molecular markers. Two mating types were identified, with the 57% of isolates belonging to MAT1-1. Ten ISSR markers produced 78 polymorphic bands with an average polymorphism information content (PIC) value of 0.33. Seven SSR markers showed high allelic variation (four to seven alleles) with the average PIC value of 0.61. The generated dendrogram using neighbor joining approach with ISSR and SSR marker data grouped isolates in three clusters. Combined dendrogram and model-based population structure analysis divided the isolates into two distinct populations. No significant correlation was found between geographical origins of isolates and their genetic diversity patterns, although the isolates from North Kermanshah and Kurdistan were closely grouped, and most of isolates from Lorestan and Kermanshah were clustered in a separate group. This relative spatial correlation between geographical locations and A. rabiei grouping indicated high genetic diversity within populations and no significant gene flow between distinctly geographical regions. This suggests the nece0ssity of continuous monitoring of A. rabiei populations in order to design effective chickpea breeding strategies to control the disease.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aghamiri A., Mehrabi R., Talebi R., 2015. Genetic diversity of Pyrenophera tritici-repentis isolates, the causal agent of wheat tan spot disease from Northern Iran. Iranian Journal of Biotechnology 13(2):e1118.
Ahmad S., Khan M.A., Sahi S.T., Ahmad R., 2014. Identification of resistant sources in chickpea against chickpea blight disease. Archive of Phytopathology and Plant Protection 47(15):1885-1892.
Ali H., Alam S.S., Attanayake R.N., Rahman M., Chen W., 2012. Population structure and mating type distribution of the chickpea blight pathogen Ascochyta rabiei from Pakistan and the United states. Journal of Plant Pathology 94: 99–108.
Azizpour N., Rouhrazi K., 2017. Assessment of genetic diversity of Iranian Ascochyta rabiei isolates using rep-PCR markers. Journal of Phytopathology 165 (7-8):508-514
Baite M.S., Dubey S.C., 2018. Pathogenic variability of Ascochyta rabiei causing blight of chickpea in India. Physiological and Molecular Plant Pathology 102: 122-127.
Barve M. P., Arie T., Salimath S.S., Muehlbauer F.J., Peever T.L., 2003. Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genetics and Biology 39:151–167.
Barve M.P., Santra D.K., Ranjekar P.K., Gupta V.S., 2004. Genetic diversity analysis of a world-wide collection of Ascochyta rabiei isolates using sequence tagged microsatellite markers. World Journal of Microbiology & Biotechnology 20: 735-741.
Chen R.S., McDonald B.A., 1996. Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. Genetics 142(4):1119-1127.
Farahani S., Talebi R., Maleki M., Mehrabi R., Kanouni H., 2019. Pathogenic diversity of Ascochyta rabiei isolates and identification of resistance sources in core collection of chickpea germplasm. Plant Pathology Journal 35(4):321-329.
Geistlinger J., Weising K., Winte, P., Kahl G., 2000. Locus specific microsatellite markers for the fungal chickpea pathogen Didymella rabiei (anamorph) Ascochyta rabiei. Molecular Ecology 9:1939-1941.
Ghaffari P., Talebi R., Keshavarzi F., 2014. Genetic diversity and geographical differentiation of Iranian landrace, cultivars, and exotic chickpea lines as revealed by morphological and microsatellite markers. Physiology and Molecular Biology of Plants 20(2):225-233.
Hayden M., Nguyen T., Waterman A., Chalmers K., 2008. Multiplex-Ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80.
Jamil F., Sarwar N., Sarwar M., Khan J., Geistlinger J., Kahl, G., 2000. Genetic and pathogenic diversity within Ascochyta rabiei (Pass.) Lab. populations in Pakistan causing blight of chickpea (Cicer arietinum L.). Physiological and Molecular Plant Pathology 57:243-254.
Kaiser W.J., 1997. Inter- and international spread of Ascochyta pathogens of chickpea, faba bean, and lentil. Canadian Journal of Plant Pathology 19: 215-224.
Keller S.M., McDermott J.M., Pettway R.E., Wolfe M.S., McDonald B.A., 1997. Gene flow and sexual reproduction in the wheat glume blotch pathogen Phaeosphaeria nodorum (anamorph: Stagonospora nodorum). Phytopathology 87:353–358.
Kimurto P. K., Towett B. K., Mulwa R. S., Njogu N., Jeptanui L. J., Rao G. N., Silim S., Kaloki P., Korir P., Macharia J. K., 2013. Evaluation of chickpea genotypes for resistance to ascochyta blight (Ascochyta rabiei) disease in the dry highlands of Kenya. Phytopathologia Mediterranea 52:212-221.
McDonald B. A., Linde C., 2002. Pathogen population genetics, evolutionary potential and durable resistance. Annual Review of Phytopathology 40:349–379.
McDonald B.A., 1997. The population genetics of fungi: Tools and techniques. Phytopathology 87:448–453.
Mehrabi R., Makhdoomi A., Jafar‐Aghaie M., 2015. Identification of new sources of resistance to septoria tritici blotch caused by Zymoseptoria tritici. Journal of Phytopathology 163(2):84-90.
Merga B., Haji J., Fatih Y., 2019. Economic importance of chickpea: Production, value, and world trade. Cogent Food & Agriculture 5(1):1615718.
Morjane H., Geistlinger J., Harrabi M., Weising K., Kahl G., 1994. Oligonucleotide fingerprinting detects genetic diversity among Ascochyta rabiei isolates from a single chickpea field in Tunisia. Current Genetics 26:191-197.
Nourollahi K., Javannikkhah M., Naghavi M. R., Lichtenzveig J., Okhovat M., Oliver R. P., Ellwood S. R., 2011. Genetic diversity and population structure of Ascochyta rabiei from the western Iranian Ilam and Kermanshah provinces using MAT and SSR markers. Mycological progress 10:1–7.
Peakall R., Smouse P.E., 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288–295.
Peever T. L., Salimath S., Su G., Kaiser W. J., Muehlbauer F. J., 2004. Historical and contemporary multilocus population structure of Ascochyta rabiei (teleomorph: Didymella rabiei) in the Pacific Northwest of the United States. Molecular Ecology 13:291–309.
Perrier X., Flori A., Bonnot F., 2003. Data analysis methods. In: Hamon P., Seguin M., Perrier X., Glaszmann J.C., editors. Genetic diversity of cultivated tropical plants. Boca Raton (FL): CRC Press, p:43–76.
Phan H.T.T., Ford R., Taylor P.W.J., 2003a. Mapping the mating type locus of Ascochyta rabiei, the causal agent of Ascochyta blight of chickpea. Molecular Plant Pathology 4:373-381.
Phan H.T.T., Ford R., Taylor P.W.J., 2003b. Population structure of Ascochyta rabiei in Australia based on STMS fingerprints. Fungal Diversity 13:111-129.
Pritchard J.K., Stephens M., Donnelly P., 2000. Inference of population structure using multilocus genotype data. Genetics 155:945–959.
Rhaiem A., Cherif M., Dyer P. S., Peever T. L., 2007. Distribution of mating types and genetic diversity of Ascochyta rabiei populations in Tunisia revealed by mating-type- specific PCR and random amplified polymorphic DNA markers. Journal of Phytopathology 155:596–605.
Santra D. K., Singh G., Kaiser W. J., Gupta V. S., Ranjekar P. K., Muehlbauer F. J., 2001. Molecular analysis of Ascochyta rabiei (Pass.) Labr., the pathogen of ascochyta blight in chickpea. Theoretical and Applied Genetics 102:676–682.
Singh K.B., Reddy M.V., 1996. Improving chickpea yield by incorporating resistance to ascochyta blight. Theoretical and Applied Genetics 92:509-515.
Talebi R., Naji A.M., Fayaz F., 2008. Geographical patterns of genetic diversity in cultivated chickpea (Cicer arietinum L.) characterized by amplified fragment length polymorphism. Plant Soil Environment 54(10):447-452.
Taylor P. W. J., Ford R., 2007. Diagnostics, genetic diversity and pathogenic variation of ascochyta blight of cool season food and feed legumes. European Journal of Plant Pathology 119:127–133.
Trapero-Casas A., Kaiser W.J., 1992. Development of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea straw. Phytopathology 82:1261-1266
Vafaei S.H., Rezaee S., Moghadam A., Zamanizadeh H.R., 2016. Virulence diversity of Ascochyta rabiei the causal agent of Ascochyta blight of chickpea in the western provinces of Iran. Archive of Phytopathology and Plant Protection 48:921-930.
VanDer Maesen L.J.G., 1987. Origin, history and taxonomy of chickpea. In: The chickpea. Saxena, M.C. and Singh, K.B. (eds). CAB International, Oxford, UK.
Varshney R., Pande S., Kannan S., Mahendar T., Sharma M., Gaur P., Hoisington D., 2009. Assessment and comparison of AFLP and SSR based molecular genetic diversity in Indian isolates of Ascochyta rabiei, a causal agent of ascochyta blight in chickpea (Cicer arietinum L.). Mycological Progress 8:87–97
Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology 31:240–246.
Weising K., Kaemmer D., Epplen J. T., Weigand F., Saxena M., Kahl, G., 1991. DNA fingerprinting of Ascochyta rabiei with synthetic oligodeoxynucleotides. Current Genetics 19:483–489.
Younessi H., Okhovat S. M., Hejaroud G. A., Zad S. J., Taleei A. R., Zamani, M. R., 2004. Virulence variability of Ascochyta rabiei isolates on chickpea cultivars in Kermanshah province. Iranian Journal of Plant Pathology 39:213-228.
Zhan J., Kema G.H., Waalwijk C., McDonald B.A., 2002. Distribution of mating type alleles in the wheat pathogen Mycosphaerella graminicola over spatial scales from lesions to continents. Fungal Genetics and Biology 36:128–136.