Vol. 63 No. 1 (2024)
Articles

Bacillus velezensis B63 and chitosan control root rot, improve growth and alter the rhizosphere microbiome of geranium

Tarek R. ELSAYED
Microbiology Department, Faculty of Agriculture, Cairo University, Giza
Nadia A.M. EL-SAID
Medicinal and aromatic plants Department, Horticulture Research Institute, Agriculture Research Center, Giza
Fatmah A. SAFHI
Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671
Nour El Houda A. REYAD
Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza
Categories

Published 2024-05-13

Keywords

  • Antagonistic bacteria,
  • soil suppressiveness,
  • marker genes,
  • hydrodistillation,
  • nitrogen fixation

How to Cite

[1]
T. R. ELSAYED, N. A. EL-SAID, F. A. SAFHI, and N. E. H. A. REYAD, “Bacillus velezensis B63 and chitosan control root rot, improve growth and alter the rhizosphere microbiome of geranium”, Phytopathol. Mediterr., vol. 63, no. 1, pp. 137–154, May 2024.

Abstract

The root rot complex of geranium plants caused by Rhizoctonia solani and Macrophomina phaseolina is a major threat, and control of these pathogens predominantly relies on chemicals. This study explored multifaceted applications of Bacillus velezensis (strain B63) and chitosan, assessing their biocontrol efficacy against root rot, and their subsequent effects on rhizosphere communities. Strain B63 was antagonistic to R. solani and M. phaseolina. Under field conditions, greatest efficacy was obtained with strain B63 (36% and 33% disease reductions in, respectively, two growing seasons), chitosan soaking + foliar spray 0.2% (CSF 0.2%) (33 and 27% reductions), and 0.1% chitosan soaking + foliar spray (CSF 0.1%) (33 and 26% reductions). These treatments also changed rhizosphere microbiota, as shown by numbers of colony-forming units (CFU) and 16S rRNA gene microbiome analyses. Concomitant with rhizosphere shifts, essential oil yields and composition were positively affected, as shown by gas chromatography analyses. Chitosan soaking + foliar spray 0.2% increased concentrations of citronellol (1.36-fold), geraniol (1.37-fold), citronellyl formate (1.54-fold), and geranyl formate (1.94-fold) in geranium essential oil, compared with the experimental controls. Strain B63 also increased these essential oils by 1.04- to 1.27-fold. B63 also enhanced eugenol levels by 1.35-fold. Treatments with B63 were more effective than chitosan in improving the geranium plant morphological parameters (plant height, numbers of branches, biomass). These results show that B. velezensis strain B63 treatments have potential for enhancing yields and product quality from geranium plant under root rot infection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Ahmad B., Jaleel H., Shabbir A., Khan M.M.A., Sadiq Y., 2019. Concomitant application of depolymerized chitosan and GA modulates photosynthesis, essential oil and menthol production in peppermint (Mentha piperita L.) Scientia Horticulturae 246: 371–379. https://doi.org/10.1016/j.scienta.2018.10.031 DOI: https://doi.org/10.1016/j.scienta.2018.10.031
  2. Ali S., Tyagi A., Bae H., 2023. Plant Microbiome: An ocean of possibilities for improving disease resistance in plants. Microorganisms 11: 392. https://doi.org/10.3390/microorganisms11020392 DOI: https://doi.org/10.3390/microorganisms11020392
  3. Antoniazzi N., Deschamps C., 2006. Análise de crescimento de duas cultivares de cevada após tratamentos com elicitores e fungicidas. Ciência Rural 36: 1065–1071 doi:10.1590/S0103-84782006000400004 DOI: https://doi.org/10.1590/S0103-84782006000400004
  4. Anusuya S., Sathiyabama M., 2014. Effect of chitosan on rhizome rot disease of turmeric caused by Pythium aphanidermatum. International Scholarly Research Notices 305349. https://doi.org/10.1155/2014/305349 DOI: https://doi.org/10.1155/2014/305349
  5. Azmana M., Mahmood S., Hilles A.R., Rahman A., Arifin M.A.B, Ahmed S., 2021. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules 185: 832–848. https://doi.org/10.1016/j.ijbiomac.2021.07.023 DOI: https://doi.org/10.1016/j.ijbiomac.2021.07.023
  6. Berliana A.I., Kuswandari C.D., Retmana B.P., Putrika A., Purbaningsih S., 2020. Analysis of the potential application of chitosan to improve vegetative growth and reduce transpiration rate in Amaranthus hybridus. In: IOP Conference Series: Earth and Environmental Science. Life and Environmental Sciences Academics Forum 2018, 1st November 2018, West Java, Indonesia 481: 012021, 2020. https://doi.org/10.1088/1755-1315/481/1/012021 DOI: https://doi.org/10.1088/1755-1315/481/1/012021
  7. Bertani G., 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology 62(3): 293–300. https://doi.org/10.1128/JB.62.3.293-300.1951 DOI: https://doi.org/10.1128/jb.62.3.293-300.1951
  8. Bharti V., Vasudeva N., Duhan J.S., 2013. Bacteriostatic and fungistatic activities of Oreganum vulgare extract and volatile oil and interaction studies in combination with antibiotics and antifungal agents against food poisoning pathogens. International Food Research Journal 20(3): 1457–1462.
  9. British Pharmacopoeia, 1963. Determination of Volatile Oils in Drugs. The pharmaceutical press, London, WCI.
  10. Carrión V.J., Perez-Jaramillo J., Cordovez V., Tracanna V., De Hollander M., … Mohanraju P., 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366: 606–612. https://doi.org/10.1126/science. aaw9285 DOI: https://doi.org/10.1126/science.aaw9285
  11. Chamkhi I., Benali T., Aanniz T., 2021. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant Physiology and Biochemistry 167: 269–295. https://doi.org/ 10.1016/J.PLAPHY.2021.08.001 DOI: https://doi.org/10.1016/j.plaphy.2021.08.001
  12. Chen J., Mo L., Zhang Z., Nan J., Xu D., … Bao Y., 2020. Evaluation of the ecological restoration of a coal mine dump by exploring the characteristics of microbial communities. Applied Soil Ecology. 147: 103430. https://doi.org/10.1016/J.APSOIL.2019.103430. DOI: https://doi.org/10.1016/j.apsoil.2019.103430
  13. Chen E., Chao S., Shi B., Liu L., Chen M., …Wu H., 2023. Bacillus velezensis ZN-S10 reforms the rhizosphere microbial community and enhances tomato resistance to TPN. Plants 12: 3636. https://doi.org/10.3390/plants12203636 DOI: https://doi.org/10.3390/plants12203636
  14. Coque J.J.R., Álvarez-Pérez J.M., Cobos R., González-García S., Ibáñez A.M., … Calvo-Peña C., 2020. Advances in the control of phytopathogenic fungi that infect crops through their root system. In: Advances in Applied Microbiology (G.M. Gadd, S. Sariaslani, ed.), Academic Press, Cambridge, MA, USA, 123–170. https://doi.org/10.1016/bs.aambs.2020.01.003 DOI: https://doi.org/10.1016/bs.aambs.2020.01.003
  15. Da Silva E. A., De Paula A. C. C. F. F., Silva V. N. B., De Alvarenga A. A., Bertolucci, S. K. V., 2021. Biostimulating effect of chitosan and acetic acid on the growth and profile of the essential oil of Mentha arvensis L. Industrial Crops and Products 171: 113987. https://doi.org/10.1016/j.indcrop.2021.113987 DOI: https://doi.org/10.1016/j.indcrop.2021.113987
  16. Dehsheikh A. B., Sourestani M. M., Zolfaghari M., Enayatizamir N., 2020. Changes in soil microbial activity, essential oil quantity, and quality of Thai basil as response to biofertilizers and humic acid. Journal of Cleaner Production 256: 120439. https://doi.org/10.1016/j.jclepro.2020.120439 DOI: https://doi.org/10.1016/j.jclepro.2020.120439
  17. Dewidar A., Kenawy A., Ghebrial E., 2019. influence of different garlic treatments on controlling basal stem rot, root rot and infection by broomrape in Geranium plants. Egyptian Journal of Phytopathology 47: 347–366. DOI: https://doi.org/10.21608/ejp.2019.132188
  18. dos Santos Lopes M.J., Dias-Filho M.B., Gurgel E.S.C., 2021. Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Frontiers in Sustainable Food Systems 5: 606454. https://doi.org/10.3389/FSUFS.2021.606454 DOI: https://doi.org/10.3389/fsufs.2021.606454
  19. El Hadrami A., Adam L.R., El Hadrami I., Daayf F., 2010. Chitosan in plant protection. Marine Drugs 4: 968–987. https://doi.org/10.3390/MD8040968 DOI: https://doi.org/10.3390/md8040968
  20. Elsayed T.R., Jacquiod S., Nour E., Sørensen S.J., Smalla K., 2020. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia Solanacearum. Frontiers in Microbiology 10. https://doi.org/10.3389/FMICB.2019.02835 DOI: https://doi.org/10.3389/fmicb.2019.02835
  21. Emami Bistgani Z., Siadat S.A., Bakhshandeh A., Ghasemi Pirbalouti A., Hashemi M., 2017. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. The Crop Journal 5: 407–415. https://doi.org/10.1016/J.CJ.2017.04.003 DOI: https://doi.org/10.1016/j.cj.2017.04.003
  22. Evans J.R., 2013. Improving Photosynthesis. Plant Physiology 162: 1780–1793. https://doi.org/10.1104/pp.113.219006 DOI: https://doi.org/10.1104/pp.113.219006
  23. Fan B., Wang C., Song X., Ding, X., Wu L., … Borriss R., 2018. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Frontiers in Microbiology 9: 2491. https://doi.org/10.3389/fmicb.2018.02491 DOI: https://doi.org/10.3389/fmicb.2018.02491
  24. Fierer N., Jackson J.A., Vilgalys R., Jackson R.B., 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR Assays. Applied and Environmental Microbiology 7: 4117–4120 https://doi.org/10.1128/AEM.71.7.4117-4120.2005 DOI: https://doi.org/10.1128/AEM.71.7.4117-4120.2005
  25. Gao Y., Zhang Y., Zheng Z., Wu X., Dong X., Hu Y., Wang X., 2022. Agricultural Jiaosu: An eco-friendly and cost-effective control strategy for suppressing Fusarium root rot disease in Astragalus membranaceus. Frontiers in Microbiology 13. https://doi.org/10.3389/fmicb.2022.823704 DOI: https://doi.org/10.3389/fmicb.2022.823704
  26. Garbini G.L., Grenni P., Rauseo J., Patrolecco L., Pescatore T., … Caracciolo A.B., 2022. Insights into structure and functioning of a soil microbial community amended with cattle manure digestate and Sulfamethoxazole. Journal of Soils and Sediments 22: 2158–2173. https://doi.org/10.1007/s11368-022-03222-y DOI: https://doi.org/10.1007/s11368-022-03222-y
  27. Ghasemi Pirbalouti A., Malekpoor F., Salimi A., Golparvar A.R., 2017. Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Scientia Horticulturae 217: 114–122 https://doi.org/10.1016/J.SCIENTA.2017.01.031 DOI: https://doi.org/10.1016/j.scienta.2017.01.031
  28. Gu Y., Banerjee S., Dini-Andreote F., Xu Y., Shen Q., Jousset A., Wei Z., 2022. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. International Society for Microbial Ecology Journal 16: 2448–2456. https://doi.org/10.1038/s41396-022-01290-z DOI: https://doi.org/10.1038/s41396-022-01290-z
  29. Hafeez F. Y., Naureen Z., Sarwar A., 2019. Surfactin: an emerging biocontrol tool for agriculture sustainability. In: Plant Growth Promoting Rhizobacteria for Agricultural Sustainability (A. Kumar, V. Meena, ed.). Springer, Singapore, 203–213. https://doi.org/10.1007/978-981-13-7553-8_10 DOI: https://doi.org/10.1007/978-981-13-7553-8_10
  30. Helal D. S., El-Khawas H., Elsayed T. R., 2022. Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. Journal of Genetic Engineering and Biotechnology 20(1): 79. https://doi.org/10.1186/s43141-022-00361-0 DOI: https://doi.org/10.1186/s43141-022-00361-0
  31. Hou S., Wolinska K. W., Hacquard S., 2021. Microbiota-root-shoot-environment axis and stress tolerance in plants. Current Opinion in Plant Biology 62: 102028. https://doi.org/10.1016/j.pbi.2021.102028 DOI: https://doi.org/10.1016/j.pbi.2021.102028
  32. Illumina2013. 16S Metagenomic Sequencing Library Preparation. Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System 2013 Available at: support/documents/documentation/https://support.illumina.com/content/dam/illumina- chemistry_documentation/16 s/16s-metagenomic-library-prep-guide-15044223-b.pdf. Accessed April 05, 2013.
  33. Kahromi S., Khara J., 2021. Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum Kotschyi. Journal of the Science of Food and Agriculture 9: 3898–3907. https://doi.org/10.1002/jsfa.11030 DOI: https://doi.org/10.1002/jsfa.11030
  34. Khan M.S., Gao J., Xuqing C., Mingfang Z., Fengping Y., …, Zhang X., 2020. The endophytic bacteria Bacillus Velezensis Lle-9, isolated from Lilium leucanthum, Harbors antifungal activity and plant growth-promoting effects. Journal of Microbiology and Biotechnology 30(5): 668–680. https://doi.org/10.4014/jmb.1910.10021 DOI: https://doi.org/10.4014/jmb.1910.10021
  35. Kıtır Şen N., Duran, A., 2023. A new approach on essential oil production of Origanum onites L.: Microbial fertilization and microwave extraction. Heliyon 9: e20211. https://doi.org/10.1016/j.heliyon.2023.e20211 DOI: https://doi.org/10.1016/j.heliyon.2023.e20211
  36. Lahlali R., Ezrari S., Radouane N., Kenfaoui J., Esmaeel Q., …, Barka E.A., 2022. Biological control of plant pathogens: A global perspective. Microorganisms 10: 596. https://doi.org/10.3390/microorganisms10030596 DOI: https://doi.org/10.3390/microorganisms10030596
  37. Lei C., Lei C., Ma D., Pu G., Qiu X., …, Liu B., 2011. Foliar application of chitosan activates artemisinin biosynthesis in Artemisia Annua L. Industrial Crops and Products 1: 176–182. https://doi.org/10.1016/j.indcrop.2010.10.001 DOI: https://doi.org/10.1016/j.indcrop.2010.10.001
  38. Li K., Ronge X., Song L., Pengcheng L., 2020. Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. Journal of Agricultural and Food Chemistry 44: 12203–12211. https://doi.org/10.1021/ACS.JAFC.0C05316 DOI: https://doi.org/10.1021/acs.jafc.0c05316
  39. Li Y.-T., Gao H.-Y., Zhang Z.-S., 2023. Effects of environmental and non-environmental factors on dynamic photosynthetic carbon assimilation in leaves under changing light. Plants 12(10): 2015. https://doi.org/10.3390/plants12102015 DOI: https://doi.org/10.3390/plants12102015
  40. Li Z., Zheng Y., Li Y., Cheng X., Huang S., Yang X., Qin Y., 2022. Genotype-specific recruitment of rhizosphere bacteria from sandy loam soil for growth promotion of Cucumis sativus var. hardwickii. Frontiers in Microbiology 13: 910644. https://doi.org/10.3389/fmicb.2022.910644 DOI: https://doi.org/10.3389/fmicb.2022.910644
  41. Liu X., Zhang S., Jiang Q., Bai Y., … Ding W., 2016. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Scientific Reports 6: 36773. https://doi.org/10.1038/srep36773 DOI: https://doi.org/10.1038/srep36773
  42. Liu Y., Chen L., Wu, G., Feng H., Zhang G., … Zhang R., 2017. Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum. Molecular Plant-Microbe Interactions Journal 30: 53–62. https://doi.org/10.1094/MPMI-07-16-0131-R DOI: https://doi.org/10.1094/MPMI-07-16-0131-R
  43. Liu M., Philp J., Wang Y., Hu J., Wei Y., …, Denton M.D., 2022. Plant Growth-promoting Rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports 1: 8381. https://doi.org/10.1038/s41598-022-12472-2 DOI: https://doi.org/10.1038/s41598-022-12472-2
  44. Lyu D., Smith D. L., 2022., The root signals in rhizospheric inter-organismal communications. Frontiers in Plant Science, 13: 1064058. https://doi.org/10.3389/fpls.2022.1064058 DOI: https://doi.org/10.3389/fpls.2022.1064058
  45. Maslennikova V.S., Tsvetkova V.P., Shelikhova E.V., Selyuk M.P., Alikina T.Y., … Dubovskiy I.M., 2023. Bacillus subtilis and Bacillus amyloliquefaciens mix suppresses Rhizoctonia disease and improves rhizosphere microbiome, growth and yield of potato (Solanum tuberosum L.). Journal of Fungi 9: 1142. https://doi.org/10.3390/jof9121142 DOI: https://doi.org/10.3390/jof9121142
  46. Mazrou R., Ali E., Hassan S., Hassan F.A. 2021., Pivotal role of chitosan nanoparticles in enhancing the essential oil productivity and antioxidant capacity in Matricaria chamomilla L. Horticulture 12: 114–122. https://doi.org/10.3390/horticulturae7120574 DOI: https://doi.org/10.3390/horticulturae7120574
  47. Meena M., Yadav G., Sonigra P., Nagda A., Mehta T.N., …, Harish Marwal A., 2022., Role of elicitors to initiate the induction of systemic resistance in plants to biotic stress. Plant Stress 5: 100103. https://doi.org/10.1016/j.stress.2022.100103 DOI: https://doi.org/10.1016/j.stress.2022.100103
  48. Moon J.H., Won S.J., Maung C.E.H., Choi J.H., Choi S.I., …, Ahn Y.S., 2021., Bacillus velezensis CE 100 inhibits root rot diseases (phytophthora spp.) and promotes growth of Japanese Cypress (Chamaecyparis obtusa Endlicher) seedlings. Microorganisms 4: 821. https://doi.org/10.3390/MICROORGANISMS9040821 DOI: https://doi.org/10.3390/microorganisms9040821
  49. Narnoliya L.K., Jadaun J.S., Singh S.P., 2019. The phytochemical composition, biological effects and biotechnological approaches to the production of high-value essential oil from geranium. In: Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications and Biotechnological Production (Malik S. ed.). Springer, 327–352 DOI: https://doi.org/10.1007/978-3-030-16546-8_12
  50. Olanrewaju O.S., Babalola O.O., 2022. The rhizosphere microbial complex in plant health: A review of interaction dynamics. Journal of Integrative Agriculture 21(8): 2168–2182. https://doi.org/10.1016/S2095-3119(21)63817-0 DOI: https://doi.org/10.1016/S2095-3119(21)63817-0
  51. Orhan I.E., Ozçelik B., Kartal M., Kan Y., 2012. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components, Turkish Journal of Biology 36(3): 239–246. https://doi.org/10.3906/biy-0912-30. DOI: https://doi.org/10.3906/biy-0912-30
  52. Pinho, D., Barroso, C., Froufe, H., Brown, N., Vanguelova, …, Denman, S., 2020. Linking Tree Health, Rhizosphere Physicochemical Properties, and Microbiome in Acute Oak Decline. Forests 11(11): 1153. https://doi.org/10.3390/f11111153 DOI: https://doi.org/10.3390/f11111153
  53. Piras A.M., Maisetta G., Sandreschi S., Gazzarri M., Bartoli C., … Batoni G., 2015. Chitosan nanoparticles loaded with the antimicrobial peptide Temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Frontiers in Microbiology 6: 372. https://doi.org/10.3389/FMICB.2015.00372 DOI: https://doi.org/10.3389/fmicb.2015.00372
  54. Prasad D., Singh K.P., Kumar J., 2008. Root Rot and wilt complex of rose-scented Geranium (pelargonium Graveolens) in Uttarakhand. Indian Phytopathology 61(3): 365–366.
  55. Raveau R., Fontaine J., Lounès-Hadj Sahraoui A.L., 2020. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: A review. Foods 9(3): 365. https://doi.org/10.3390/foods9030365 DOI: https://doi.org/10.3390/foods9030365
  56. Reyad N. E. H. A., Elsayed T. R., Naguib D. M., Azoz, S. N., 2022. Biocontrol of root rot in Geranium with antimycotic rhizobateria. Rhizosphere 24: 100607. https://doi.org/10.1016/j.rhisph.2022.100607 DOI: https://doi.org/10.1016/j.rhisph.2022.100607
  57. Román-Doval R., Tenorio-Barajas A.Y., Gomez-Sánchez A., Valencia-Lazcano A.A., 2023. Chitosan: properties and its application in agriculture in context of molecular weight. Polymers 15: 2867 https://doi.org/10.3390/polym15132867 DOI: https://doi.org/10.3390/polym15132867
  58. Sharifi-Rad R., Esmaeilzadeh Bahabadi S., Samzadeh-Kermani A., Gholami M., 2020. The effect of non-biological elicitors on physiological and biochemical properties of medicinal plant Momordica charantia L. Iranian Journal of Science and Technology, Transactions A: Science 44: 1315–1326 https://doi.org/10.1007/s40995-020-00939-8 DOI: https://doi.org/10.1007/s40995-020-00939-8
  59. Simon L., Haichar Z., 2019. Determination of Root Exudate Concentration in the Rhizosphere Using 13C Labeling. Bio-Protocol Journal 9(9): e3228. https://doi.org/10.21769/BioProtoc.3228 DOI: https://doi.org/10.21769/BioProtoc.3228
  60. Srivastava A.K., Das A.K., Jagannadham P.T.K., Bora P., Ansari F.A., Bhate R., 2022. Bioprospecting Microbiome for Soil and Plant Health Management Amidst Huanglongbing Threat in Citrus: A Review. Frontiers in Plant Science 13: 858842. https://doi.org/10.3389/fpls.2022.858842 DOI: https://doi.org/10.3389/fpls.2022.858842
  61. Stukenbrock E.H., Gurr S., 2023. Address the growing urgency of fungal disease in crops. Nature 617(7959): 31–34. https://doi.org/10.1038/d41586-023-01465-4 DOI: https://doi.org/10.1038/d41586-023-01465-4
  62. Swamy K.N., Rao S.S.R., 2009. Effect of 24-epibrassinolide on growth, photosynthesis, and essential oil content of Pelargonium graveolens (l.) Herit. Russian Journal of Plant Physiology 56: 616–620. https://doi.org/10.1134/S1021443709050057 DOI: https://doi.org/10.1134/S1021443709050057
  63. Vallejo L., 2023. The future of Bacillus Amyloliquefaciens based formulations looks promising interview with Liliana Vallejo from BASF. Accessed November 11, 2023, from https://news.agropages.com/News/Detail-45350.htm
  64. Wang N., Wang L., Zhu K., Hou S., Chen L., … Guo JH., 2019. Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Frontiers in Microbiology 10: 98. https://doi.org/10.3389/fmicb.2019.00098 DOI: https://doi.org/10.3389/fmicb.2019.00098
  65. Wang C., Zhao X., Wu K., Liang C., Liu J., … Zhang W., 2023. Isolation and characterization of Bacillus velezensis strain B19 for biocontrol of Panax notoginseng root rot. Biological Control 185: 105311. https://doi.org/10.1016/j.biocontrol.2023.105311 DOI: https://doi.org/10.1016/j.biocontrol.2023.105311
  66. Williamson-Benavides B.A., Dhingra A., 2021. Understanding root rot disease in agricultural crops. Horticulturae 7(2): 33. https://doi.org/10.3390/horticulturae7020033 DOI: https://doi.org/10.3390/horticulturae7020033
  67. Yánez-Mendizábal V., Falconí C.E., 2018. Efficacy of Bacillus spp. to biocontrol of anthracnose and enhance plant growth on Andean lupin seeds by lipopeptide production. Biological Control 122: 67–75. https://doi.org/10.1016/j.biocontrol.2018.04.004 DOI: https://doi.org/10.1016/j.biocontrol.2018.04.004
  68. Yu H., Yang F., Hu C., Yang X., Zheng A., … Lv M., 2023. Production status and research advancement on root rot disease of Faba bean (Vicia faba L.) in China. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls.2023.1165658 DOI: https://doi.org/10.3389/fpls.2023.1165658
  69. Zhao Q., Wu Y.N., Fan Q., Han Q.Q., Paré P.W., …. Zhang J.L., 2016. Improved growth and metabolite accumulation in Codonopsis pilosula (franch.) Nannf. by inoculation of Bacillus amyloliquefaciens GB03. Journal of Agricultural and Food Chemistry 64(43): 8103–8108. https://doi.org/10.1021/acs.jafc.6b03390 DOI: https://doi.org/10.1021/acs.jafc.6b03390
  70. Zubair M., Ramzani P.M.A., Rasool B., Khan M.A., Ur-Rahman M., … Iqbal, M., 2021. Efficacy of chitosan-coated textile waste biochar applied to cd-polluted soil for reducing cd mobility in soil and its distribution in Moringa (Moringa oleifera L.). Journal of Environmental Management 284: 112047. https://doi.org/10.1016/j.jenvman.2021.112047 DOI: https://doi.org/10.1016/j.jenvman.2021.112047