Vol. 63 No. 2 (2024)
Articles

Interactions between bois noir and the esca disease complex in a Chardonnay vineyard in Italy

Francesco PAVAN
Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
Elena CARGNUS
Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
Davide FRIZZERA
Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
Marta MARTINI
Department of “Scienze Agrarie ed Ambientali”, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
Paolo ERMACORA
Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy

Published 2024-09-16

Keywords

  • Grapevine yellows,
  • phytoplasmas,
  • grapevine trunk diseases,
  • symptom evolution,
  • induced defense

How to Cite

[1]
F. PAVAN, E. CARGNUS, D. FRIZZERA, M. MARTINI, and P. ERMACORA, “Interactions between bois noir and the esca disease complex in a Chardonnay vineyard in Italy”, Phytopathol. Mediterr., vol. 63, no. 2, pp. 303–314, Sep. 2024.

Abstract

Grapevine yellows bois noir (BN) and the grapevine trunk disease esca complex (EC) cause serious yield losses in European vineyards and are often widespread in the same vineyard. In a Chardonnay vineyard in north-eastern Italy, evolution of the two diseases from 2007 to 2020 was compared and their possible interaction was investigated. Evolution of symptomatic grapevines over the 16 years was very different between the two diseases, with a substantial linear increase for BN and an exponential increase for EC. The BN increase from one year to another was associated with the abundance of Hyalesthes obsoletus, the BN-phytoplasma vector, whereas the exponential increase in EC was likely due to the amount of inoculum and the increased size of pruning cuts over time. The courses of the two diseases were also very different, with a much greater occurrence of dead grapevines from EC than from BN. Some grapevines showed symptoms of both diseases, but the probability was less that a grapevine symptomatic for BN or EC showed symptoms of the other disease. Examinations of the spatial distribution of the two diseases showed dissociation between them. Data indicated that mechanisms of induced defense were involved in the lower probability that a grapevine affected by one showed symptoms of the other.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Albertazzi G., Milc J., Caffagni A., Francia E., Roncaglia E., … Pecchioni N., 2009. Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Science 176: 792–804. DOI: https://doi.org/10.1016/j.plantsci.2009.03.001
  2. Alma A., Lessio F., Nickel H., 2019. Insects as phytoplasma vectors: Ecological and epidemiological aspects. In: Phytoplasmas: Plant Pathogenic Bacteria—II, Transmission and Management of Phytoplasma—Associated Diseases (A. Bertaccini, P.G. Weintraub, G.P. Rao, N. Mori, ed.) Springer, Singapore, 1–25. DOI: https://doi.org/10.1007/978-981-13-2832-9_1
  3. Amponsah N.T., Jones E.F., Ridgway H.J., Jaspers M.V., 2011. Identification, potential inoculum sources and pathogenicity of botryosphaeriaceous species associated with grapevine dieback disease in New Zealand. European Journal of Plant Pathology 131: 467–482. DOI: https://doi.org/10.1007/s10658-011-9823-1
  4. Angelini E., Constable F., Duduk B., Fiore N., Quaglino F., Bertaccini A., 2018. Grapevine phytoplasmas. In: Phytoplasmas: Plant Pathogenic Bacteria—I, Characterisation and Epidemiology of Phytoplasma—Associated Diseases (G.P. Rao, A. Bertaccini, N. Fiore, L.W. Liefting, ed.) Springer, Singapore, 123–152. DOI: https://doi.org/10.1007/978-981-13-0119-3_5
  5. Belli G., Bianco P.A., Conti M., 2010. Grapevine yellows in Italy: past, present and future. Journal of Plant Pathology 92: 303–326.
  6. Bellomo C., Carraro L., Ermacora P. Pavan F., Osler R., … Governatori G., 2007. Recovery phenomena in grapevines affected by grapevine yellows in Friuli Venezia Giulia. Bulletin of Insectology 60: 235‒236.
  7. Bertazzon N., Bagnaresi P., Forte V., Mazzucotelli E., Filippin L., … Angelini E., 2019. Grapevine comparative early transcriptomic profiling suggests that Flavescence dorée phytoplasma represses plant responses induced by vector feeding in susceptible varieties. BMC Genomics 20: 526. DOI: https://doi.org/10.1186/s12864-019-5908-6
  8. Bertsch C., Ramirez-Suero M., Magnin-Robert M., Larignon P., Chong J., … Fontaine F., 2013. Grapevine trunk diseases: complex and still poorly understood. Plant Pathology 62: 243–265. DOI: https://doi.org/10.1111/j.1365-3059.2012.02674.x
  9. Bigot G., Sivilotti P., Stecchina M., Lujan C., Freccero A. Mosetti, D., 2020. Long-term effects of Trichoderma asperellum and Trichoderma gamsii on the prevention of esca in different vineyards of Northeastern Italy. Crop Protection 137: 105264. DOI: https://doi.org/10.1016/j.cropro.2020.105264
  10. Borgo M., Pegoraro G., Sartori E., 2016. Susceptibility of grape varieties to esca disease. In: 39th World Congress of Vine and Wine, BIO Web of Conferences, 7: 01041. DOI: 10.1051/bioconf/20160701041. DOI: https://doi.org/10.1051/bioconf/20160701041
  11. Bruez E., Lecomte P., Grosman J., Doublet B., Bertsch C., … Gu.rin-Dubrana L., 2013. Overview of grapevine trunk diseases in France in the 2000s. Phytopathologia Mediterranea 52: 262–275.
  12. Bruez E., Vallance J., Gautier A., Laval V., Compant, … Rey P., 2020. Major changes in grapevine wood microbiota are associated with the onset of esca, a devastating trunk disease. Environmental Microbiology 22: 5189–5206. DOI: https://doi.org/10.1111/1462-2920.15180
  13. Bulgari D., Casati P., Quaglino F., Bianco P. A., Compant S., Mathieu F., 2016. Endophytic bacteria associated with grapevine plants: putative candidates for phytoplasma containment. In: Biocontrol of Major Grapevine Diseases: Leading Research, CABI, Wallingford, UK, 215–230. DOI: https://doi.org/10.1079/9781780647128.0215
  14. Casarin S., Vincenzi S., Esposito A., Filippin L., Forte V., Bertazzon N., 2023. A successful defence strategy in grapevine cultivar ‘Tocai friulano’ provides compartmentation of grapevine Flavescence dorée phytoplasma. BMC Plant Biology 23(1): 161. DOI: https://doi.org/10.1186/s12870-023-04122-0
  15. Claverie M., Notaro M., Fontaine F., Wery J., 2020. Current knowledge on Grapevine Trunk Diseases with complex etiology: a systemic approach. Phytopathologia Mediterranea 59(1): 29–53. DOI: https://doi.org/10.36253/phyto-11150
  16. Cooper A., Ton J. 2022. Immune priming in plants: from the onset to transgenerational maintenance. Essays Biochemistry 66: 635–646. https://doi.org/10.1042/ebc20210082. DOI: https://doi.org/10.1042/EBC20210082
  17. De la Fuente M., Fontaine F., Gramaje D., Armengol J., Smart R., … Corio-Costet M.F., 2016. Grapevine Trunk Diseases. A Review. In: International Organisation of Vine and Wine , OIV. (Ed.), 1st edition, Paris, France, 24 p. ISBN : 979-10-91799-60-7.
  18. Dermastia M., 2019. Plant Hormones in Phytoplasma Infected Plants. Frontiers in Plant Science 10: 477. DOI: https://doi.org/10.3389/fpls.2019.00477
  19. Durrant W.E., Dong X., 2004. Systemic acquired resistance. Annual Review of Phytopathology 42: 185–209. DOI: https://doi.org/10.1146/annurev.phyto.42.040803.140421
  20. Del Frari G., Cabral A., Nascimento T., Ferreira R. B., Oliveira H., 2019. Epicoccum layuense a potential biological control agent of esca-associated fungi in grapevine. PloS ONE 14, e0213273. DOI: https://doi.org/10.1371/journal.pone.0213273
  21. Fischer M., Peighami-Ashnaei S., 2019. Grapevine, esca complex, and environment: the disease triangle. Phytopathologia Mediterranea 58: 17–37.
  22. Gambino G., Boccacci P., Margaria P., Palmano S., Gribaudo I., 2013. Hydrogen peroxide accumulation and transcriptional changes in grapevines recovered from Flavescence dorée disease. Phytopathology 103: 776–784. https://doi.org/ 10.1094/PHYTO-11-12-0309-R DOI: https://doi.org/10.1094/PHYTO-11-12-0309-R
  23. Garau R., Sechi A., Prota V.A., Moro G., 2007. Productive parameters in Chardonnay and Vermentino grapevines infected with “bois noir” and recovered in Sardinia. Bulletin of Insectology, 60(2) 233–234.
  24. García J.A., Garrido I., Ortega A., del Moral J., Llerena, J.L., Espinosa F., 2022. Physiological and Molecular Responses of Vitis vinifera cv. Tempranillo Affected by Esca Disease. Antioxidants 11: 1720. https://doi.org/10.3390/ antiox11091720. DOI: https://doi.org/10.3390/antiox11091720
  25. Goufo P., Cortez I., 2020. A lipidomic analysis of leaves of esca-affected grapevine suggests a role for galactolipids in the defense response and appearance of foliar symptoms. Biology 9(9): 268. DOI: https://doi.org/10.3390/biology9090268
  26. Goufo P., Marques A.C., Cortez I., 2019. Exhibition of local but not systemic induced phenolic defenses in Vitis vinifera L. affected by brown wood streaking, grapevine leaf stripe, and apoplexy (escacomplex). Plants 8 (10): 412. DOI: https://doi.org/10.3390/plants8100412
  27. Graniti A., Surico G., Mugnai L., 2000. Esca of grapevine: a disease complex or a complex of diseases? Phytopathologia Mediterranea 39: 16–20.
  28. Haidar R., Roudet J., Bonnard O., Dufour M. C., Corio-Costet M. F., … Fermaud M., 2016. Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiological Research 192: 172–184. DOI: https://doi.org/10.1016/j.micres.2016.07.003
  29. Kenfaoui J., Radouane N., Mennani M., Tahiri A., El Ghadraoui L., … Barka, E. A., 2022. A panoramic view on Grapevine Trunk Diseases threats: Case of Eutypa dieback, Botryosphaeria dieback, and Esca disease. Journal of Fungi 8(6): 595. DOI: https://doi.org/10.3390/jof8060595
  30. Kosovac A., Jakovljević M., Krstić O., Cvrković T., Mitrović M., … Jović J., 2019. Role of plant-specialized Hyalesthes obsoletus associated with Convolvulus arvensis and Crepis foetida in the transmission of ‘Candidatus Phytoplasma solani’-inflicted bois noir disease of grapevine in Serbia. European Journal of Plant Pathology 153: 183–195. DOI: https://doi.org/10.1007/s10658-018-1553-1
  31. Kovacs C., Balling P., Bihari Z., Nagy A., Sandor E., 2017. Incidence of grapevine trunk diseases is influenced by soil, topology and vineyard age, but not by Diplodia seriata infection rate in the Tokaj Wine Region, Hungary. Phytoparasitica 45: 21–32. DOI: https://doi.org/10.1007/s12600-017-0570-5
  32. Landi L., Romanazzi G., 2011. Seasonal variation of defense-related gene expression in leaves from bois noiraffected and recovered grapevines. Journal of Agricultural and Food Chemistry 59: 6628–6637. DOI: https://doi.org/10.1021/jf104297n
  33. Langer M., Maixner M., 2004. Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis 43, 191–199.
  34. Larignon P., Dubos B., 1997. Fungi associated with esca disease in grapevine. European Journal of Plant Pathology 103: 147–157. DOI: https://doi.org/10.1023/A:1008638409410
  35. Maixner M., 1994. Transmission of German grapevine yellows (Vergilbungskrankheit) by the planthopper Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Vitis 33: 103–104.
  36. Maixner M., 2010. Phytoplasmas epidemiological systems with multiple plant hosts. In Phytoplasmas: Genomes, Plant Hosts and Vectors; (P.G. Weintraub, P. Jones, ed.), CABI Publishing: Wallingford, UK, 213–232. DOI: https://doi.org/10.1079/9781845935306.0213
  37. Margaria P., Palmano S., 2011. Response of the Vitis vinifera L. cv. ‘Nebbiolo’ proteome to Flavescence dorée phytoplasma infection. Proteomics 11: 212–224. DOI: https://doi.org/10.1002/pmic.201000409
  38. Martini M., Musetti R., Grisan S., Polizzotto R., Borselli S., Pavan F., Osler R., 2009. DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Disease 93: 993–998. DOI: https://doi.org/10.1094/PDIS-93-10-0993
  39. Mátai A., Teszlák P., Jakab G., 2020. Recovery of Vitis vinifera L. cv. ‘Kékfrankos’ from ‘bois noir’ disease. European Journal of Plant Pathology 156(3): 987–991. DOI: https://doi.org/10.1007/s10658-019-01906-9
  40. Minuz R.L., Mancini V., Ruschioni S., Mozzon M., Foligni R., … Riolo P., 2020. Volatiles emitted by resistance inducer-treated grapevines affect Hyalesthes obsoletus behavioural responses. Bulletin of Insectology 73: 117–123.
  41. Mondello V., Larignon P., Armengol J., Kortekamp A., Vaczy K., … Fontaine F. 2018. Management of grapevine trunk diseases: knowledge transfer, current strategies and innovative strategies adopted in Europe. Phytopathologia Mediterranea 57: 369–383.
  42. Mori N., Pavan F., Bondavalli R., Reggiani N., Paltrinieri S., Bertaccini A., 2008. Factors affecting the spread of “Bois Noir” disease in north Italy vineyards. Vitis 47(1): 65–72.
  43. Mori N., Pavan F., Reggiani N., Bacchiavini M., Mazzon L., … Bertaccini A., 2012. Correlation of bois noir disease with nettle and vector abundance in northern Italy vineyards. Journal of Pest Science 85(1): 23–28. DOI: https://doi.org/10.1007/s10340-011-0375-0
  44. Mori N., Cargnus E., Martini M., Pavan F., 2020. Relationships between Hyalesthes obsoletus, its herbaceous hosts and Bois noir epidemiology in northern Italian vineyards. Insects 11: 606. DOI: https://doi.org/10.3390/insects11090606
  45. Mugnai L., Graniti A., Surico G., 1999. Esca (Black Measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Disease 83: 404–418. DOI: https://doi.org/10.1094/PDIS.1999.83.5.404
  46. Musetti R., Marabottini R., Badiani M., Martini M., Toppi L.S., … Osler R., 2007. On the role of H2O2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence dorée disease. Functional Plant Biology 34(8): 750–758. DOI: https://doi.org/10.1071/FP06308
  47. Mutton P., Boccalon W., Bressan S., Coassin C., Colautti M., … Villani A., 2002. Legno nero della vite in vigneti di Chardonnay del Friuli-Venezia Giulia. Informatore Fitopatologico 52(1): 52-59.
  48. Nerva L., Turina M., Zanzotto A., Gardiman M., Gaiotti F., … Chitarra W., 2019. Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environmental Microbiology 21: 2886–2904. DOI: https://doi.org/10.1111/1462-2920.14651
  49. Nutricati E., Pascali M., de Negro C., Bianco P.A., Quaglino F., … Luvisi A., 2023. Signalling cross-talk between salicylic and gentisic acid in the ‘Candidatus Phytoplasma solani’ interaction with Sangiovese grapevines. Plants 12: 14. DOI: https://doi.org/10.3390/plants12142695
  50. Osler R., Carraro L., Loi N., Refatti E., 1993. Symptom expression and disease occurrence of a yellow disease of grapevine in northeastern Italy. Plant Disease 77: 496‒498. DOI: https://doi.org/10.1094/PD-77-0496
  51. Osler R., Zucchetto C., Carraro L., Frausin C., Mori N., Pavan F., Vettorello G., Girolami V., 2002. Trasmissione di flavescenza dorata e legno nero e comportamento delle viti infette. L’Informatore Agrario 58 (19): 61‒65.
  52. Pacifico D., Margaria P., Galetto L., Legovich M., Abbà S., … Palmano S., 2019. Differential gene expression in two grapevine cultivars recovered from “flavescence dorée”. Microbiological Research 220: 72–82. DOI: https://doi.org/10.1016/j.micres.2018.12.005
  53. Pagliarani C., Gambino G., Ferrandino A., Chitarra W., Vrhovsek U., … Schubert, A. 2020. Molecular memory of Flavescence dorée phytoplasma in recovering grapevines. Horticulture Research 7: 126. DOI: https://doi.org/10.1038/s41438-020-00348-3
  54. Panassiti B., Hartig F., Breuer M., Biedermann R., 2015. Bayesian inference of environmental and biotic factors determining the occurrence of the grapevine disease ‘bois noir’. Ecosphere 6: 143. DOI: https://doi.org/10.1890/ES14-00439.1
  55. Paolacci A.R., Catarcione G., Ederli L., Zadra C., Pasqualini S., … Ciaffi M., 2017. Jasmonate-mediated defence responses, unlike salicylate-mediated responses, are involved in the recovery of grapevine from bois noir disease. BMC PlantBiology 17: 118. DOI: https://doi.org/10.1186/s12870-017-1069-4
  56. Pavan F., Carraro L., Vettorello G., Pavanetto E., Girolami V., Osler R., 1997. Flavescenza dorata nei vigneti delle colline trevigiane. L’Informatore Agrario 53(10): 73–78.
  57. Pavan F., Mori N., Bressan S., Mutton P., 2012. Control strategies for grapevine phytoplasma diseases: Factors influencing the profitability of replacing symptomatic plants. Phytopathologia Mediterranea 51: 11–22.
  58. Pavan F., Frizzera D., Martini M., Lujan C., Cargnus E., 2024. Is the removal of nettles along ditches effective in controlling Bois noir in vineyards? Agronomy 14: 643. DOI: https://doi.org/10.3390/agronomy14040643
  59. Perry J. N., 1998. Measures of spatial pattern for counts. Ecology 79: 1008–1017. DOI: https://doi.org/10.1890/0012-9658(1998)079[1008:MOSPFC]2.0.CO;2
  60. Perry J.N., Dixon P.M., 2002. A new method to measure spatial association for ecological count data. Écoscience 9(2): 133–141. DOI: https://doi.org/10.1080/11956860.2002.11682699
  61. Perry J. N., Winder L., Holland J.M., 1999. Red-blue plots for detecting clusters in count data. Ecology Letters 2: 106–113. DOI: https://doi.org/10.1046/j.1461-0248.1999.22057.x
  62. Pierro R., de Pascali M., Panattoni A., Passera A., Materazzi A., … Quaglino F., 2022. In silico three-dimensional (3D) modeling of the SecY protein of ‘Candidatus Phytoplasma solani’ strains associated with grapevine “bois noir” and its possible relationship with strain virulence. International Journal of Plant Biology 13(2): 15–30. DOI: https://doi.org/10.3390/ijpb13020004
  63. Quaglino F., Zhao Y., Casati P., Bulgari D., Bianco P.A., … Davis R.E., 2013. ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur-and bois noir-related diseases of plants. International Journal of Systematic and Evolutional Microbiology 63: 2879–2894. DOI: https://doi.org/10.1099/ijs.0.044750-0
  64. Ramírez-Suero M., Bénard-Gellon M., Chong J., Laloue H., Stempien E., … Bertsch C., 2014. Extracellular compounds produced by fungi associated with Botryosphaeria diebackinduce differential defence gene expression patterns and necrosis in Vitis vinifera cv. Chardonnay cells. Protoplasma 251(6): 1417–1426. DOI: https://doi.org/10.1007/s00709-014-0643-y
  65. Riffle V.L., Alvarez Arredondo J., Lomonaco I., Appel C., Catania A.A., … Casassa L.F., 2022. Vine age affects grapevine performance, grape and wine chemical and sensory composition of cv. Zinfandel from California. American Journal of Enology and Viticulture 73: 277–293. https://doi.org/10.5344/ajev.2022.22014 DOI: https://doi.org/10.5344/ajev.2022.22014
  66. Romanazzi G., D’Ascenzo D., Murolo S., 2009. Field treatment with resistance inducers for the control of grapevine Bois noir. Journal of Plant Pathology 91(3): 677–682.
  67. Romanazzi G., Murolo S., Feliziani E., 2013. Effects of an innovative strategy to contain grapevine Bois noir: field treatment with resistance inducers. Phytopathology 103(8): 785–791. DOI: https://doi.org/10.1094/PHYTO-01-13-0031-R
  68. Romeo-Oliván A., Chervin J., Breton C., Lagravère T., Daydé J., … Gaur R.K., 2022. Comparative transcriptomics suggests early modifications by vintec® in grapevinetrunk of hormonal signaling and secondary metabolism biosynthesis in response to Phaeomoniella chlamydospora and Phaeoacremonium minimum. Frontiers in Microbiology 13: 898356. DOI: https://doi.org/10.3389/fmicb.2022.898356
  69. Rotter A., Nikolić P., Turnšek N., Kogovšek P., Blejec A., Gruden K., Dermastia M., 2018.
  70. Statistical modeling of long-term grapevine response to ‘Candidatus Phytoplasma solani’ infection in the field. European Journal of Plant Pathology 150: 653–668. DOI: https://doi.org/10.1007/s10658-017-1310-x
  71. Rusjan D., Mikulic-Petkovsek M., 2015. Phenolic responses in 1-year-old canes of Vitis vinifera cv. Chardonnay induced by grapevine yellows (Bois noir). Australian Journal of Grape and Wine Research 21(1): 123–34. DOI: https://doi.org/10.1111/ajgw.12106
  72. Santi S., Grisan S., Pierasco A., De Marco F., Musetti R., 2013. Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism. Plant, Cell and Environment 36(2): 343–355. DOI: https://doi.org/10.1111/j.1365-3040.2012.02577.x
  73. Stempien E., Goddard M.L., Leva Y., Bénard-Gellon M., Laloue H., … Chong J., 2018. Secreted proteins produced by fungi associated with Botryosphaeria dieback trigger distinct defense responses in Vitis vinifera and Vitis rupestris cells. Protoplasma 255(2): 613–628. DOI: https://doi.org/10.1007/s00709-017-1175-z
  74. Sticher L., Mauch-Mani B., Métraux J. P., 1997. Systemic acquired resistance. Annual Review of Phytopathology 35: 235–270. DOI: https://doi.org/10.1146/annurev.phyto.35.1.235
  75. Surico G., 2009. Towards a redefinition of the diseases within the esca complex of grapevine. Phytopathologia Mediterranea 48: 5–10.
  76. Surico G., Mugnai L., Marchi G., 2006. Older and more recent observations on esca: a critical overview. Phytopathologia Mediterranea 45: 68–86.
  77. Úrbez-Torres J.R., 2011. The status of Botryosphaeriaceae species infecting grapevines. Phytopathologia Mediterranea 50: S5−S45
  78. Vlot A., Sales C.J.H., Lenk M., Bauer K., Brambilla A., … Nayem S., 2021. Systemic propagation of immunity in plants. New Phytologist 229(3): 1234–1250. DOI: https://doi.org/10.1111/nph.16953
  79. Yacoub A., Magnin N., Gerbore J., Haidar R., Bruez E., … Rey P., 2020. The biocontrol root-oomycete, Pythium oligandrum, triggers grapevine resistance and shifts in the transcriptome of the trunk pathogenic fungus, Phaeomoniella chlamydospora. International Journal of Molecular Sciences 21: 18. DOI: https://doi.org/10.3390/ijms21186876
  80. Zahavi T., Sharon R., Sapir G., Mawassi M., Dafny-Yelin M., Naor V., 2013. The long-term effect of Stolbur phytoplasma on grapevines in the Golan Heights. Australian Journal of Grape and Wine Research 19(2): 277–284. DOI: https://doi.org/10.1111/ajgw.12012