Vol. 63 No. 1 (2024)
Articles

Phytosanitary problems in elephant garlic (Allium ampeloprasum var. holmense) in the “Val di Chiana” area (Central Italy), and evaluation of potential control strategies

Francesco TINI
Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia
Giovanni BECCARI
Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia
Niccolò TERZAROLI
Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia
Enrica BERNA
BMP Agronomic Farm Counselling, Via Guidonami 18, 06060, Porto, Castiglione del Lago, Perugia
Lorenzo COVARELLI
Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia
Mara QUAGLIA
Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia

Published 2024-04-30

Keywords

  • Bulb diseases,
  • Fusarium,
  • Penicillium,
  • Trichoderma,
  • disease management

How to Cite

[1]
F. TINI, G. BECCARI, N. TERZAROLI, E. BERNA, L. COVARELLI, and M. QUAGLIA, “Phytosanitary problems in elephant garlic (Allium ampeloprasum var. holmense) in the ‘Val di Chiana’ area (Central Italy), and evaluation of potential control strategies”, Phytopathol. Mediterr., vol. 63, no. 1, pp. 53–72, Apr. 2024.

Abstract

Allium ampeloprasum var. holmense (elephant garlic) is traditionally cultivated in “Val di Chiana”, an area between Umbria and Tuscany regions of Central Italy, under the name “Aglione della Valdichiana”. This product has recently increased in importance, becoming a key economic resource for local farmers. In 2019, phytosanitary problems of elephant garlic cloves ready for transplanting emerged in this cultivation area. Symptom/sign observations and fungal isolations were performed for cloves divided into four components (tunic, basal plate, reserve tissue and shoot) from six farms in the “Val di Chiana” area. Isolates obtained were identified, using partial β-tubulin (BenA) and calmodulin (CaM) or translation elongation factor 1α (tef1α) genes sequences, as belonging to Penicillium [P. allii (95%), P. citrinum (4%), P. brevicompactum (1%)] or Fusarium [F. oxysporum (81%), F. proliferatum (19%)]. Fusarium spp. were mainly associated with clove tunics and basal plates, while Penicillium spp. with basal plates, reserve tissues and shoots. Fungi often also developed from asymptomatic components, but a correlation was found between isolated pathogens and disease symptoms. Pathogenicity and virulence towards elephant garlic cloves were verified for a representative isolate of each identified species, and Penicillium allii was the most virulent. Strategies to control Fusarium and Penicillium spp. on cloves were assessed, including chemicals, a biocontrol agent, surface sterilization and heat treatment. Among these, treatments with Patriot Gold® (active ingredient [a.i.] Trichoderma asperellum TV1, approved in organic farming on crops similar to elephant garlic), or Signum® (a.i. boscalid + pyraclostrobin, approved for Integrated Pest Management systems on crops similar to elephant garlic), were effective in simultaneous reduction of Penicillium spp. and Fusarium spp. Transplanting of asymptomatic cloves combined with the use of the above treatments showed promising effects for pathogens control, and to assist elephant garlic crop establishment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Abellana M., Sanchis V., Ramos A.J., 2001. Effect of water activity and temperature on growth of three Penicillium species and Aspergillus flavus on a sponge cake analogue. International Journal of Food Microbiology 71: 151–157. https://doi.org/10.1016/s0168-1605(01)00596-7
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., 1990. Basic local alignment search tool. Journal of Molecular Biology 3: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Ascrizzi R., Flamini G., 2020. Leek or garlic? A chemical evaluation of elephant garlic volatiles. Molecules 25: 2082. https://doi.org/10.3390/molecules25092082
  4. Beccari G., Senatore M.T., Tini F., Sulyok M., Covarelli L., 2018. Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, Central Italy. International Journal of Food Microbiology 273: 33–42. https://doi.org/10.1016/j.ijfoodmicro.2018.03.005
  5. Beccari G., Prodi A., Senatore M.T., Balmas V., Tini F., … Covarelli L., 2020. Cultivation area affects the presence of fungal communities and secondary metabolites in Italian durum wheat grains. Toxins 12: 97. https://doi.org/10.3390/toxins12020097
  6. Besoain X.A., Vejar R.A., Piontelli E.L. 2002. Principales hongos fitopatogenos asociados a bulbos almacenados de ajo elefante (Allium ampeloprasum var. holmense) de la zona de quillota y nogales (Chile). Boletin Micologico 17: 9–14. https://doi.org/10.22370/bolmicol.2002.17.0.433
  7. Block E., 2011. Challenges and artefact concerns in analysis of volatile sulfur compounds. In: Volatile Sulfur Compounds in Food (E. Block Ed.). (pp. 35–63). American Chemical Society. https://doi.org/10.1021/bk-2011-1068.ch002
  8. Bogo A., 1997. Evaluation of fungicides in the control of garlic bulb rot caused by Penicillium spp. Agropecuaria Caterinense 10: 5–6. https://doi.org/https://eurekamag.com/research/003/131/003131890.php
  9. Borlinghaus J., Albrecht F., Gruhlke M.C.H., Nwachukwu I.D., Slusarenko A., 2014. Allicin: chemistry and biological properties. Molecules 19: 12591–12618. https://doi.org/10.3390/molecules190812591
  10. Ceccanti C., Rocchetti G., Lucini L., Giuberti G., Landi M., … Guidi L., 2021. Comparative phytochemical profile of the elephant garlic (Allium ampeloprasum var. holmense) and the common garlic (Allium sativum) from the Val di Chiana area (Tuscany, Italy) before and after in vitro gastrointestinal digestion. Food Chemistry 338: 128011. https://doi.org/10.1016/j.foodchem.2020.128011
  11. Chandler D., Bailey A.S., Tatchell G.M., Davidson G., Greaves J., Grant W.P., 2011. The development, regulation and use of biopesticides for integrated pest management. Philosophical Transaction of the Royal Society 366: 1987–1998. https://doi.org/10.1098/rstb.2010.0390
  12. Chrétien P.L., Laurent S., Bornard I., Troulet C., El Maâtaoui M., Leyronas C., 2020. Unraveling the infection process of garlic by Fusarium proliferatum, the causal agent of root rot. Phytopathologia Mediterranea 59: 285–293. https://doi.org/10.14601/Phyto-11103
  13. Chrétien P.L., Morris C.E., Duffaud M., Leyronas C., 2021. Aetiology of garlic rot, an emerging disease in France. Plant Pathology 70: 1276–1291. https://doi.org/10.1111/ppa.13394
  14. Ciabanal I.L., Fernandez L.A., Murray A.P., Pellegrini C.N., Gallez L.M., 2021. Propolis extract and oregano essential oil as biofungicides for garlic seed cloves: in vitro assays and synergistic interaction against Penicillium allii. Journal of Applied Microbiology 131: 1909–1918. https://doi.org/10.1111/jam.15081
  15. Coutinho T.C., Ferreira M.C., Rosa L.H., de Oliveira A.M., Oliveira Junior, 2020. Penicillium citrinum and Penicillium mallochii: new phytopathogens of orange fruit and their control using chitosan. Carbohydrate Polymers 234: 115918. https://doi.org/10.1016/j.carbpol.2020.115918
  16. Covarelli L., Beccari G., Prodi A., Generotti S., Etruschi F., … Mañes J., 2015. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of Central Italy. Journal of the Science of Food and Agriculture 95: 540–551. https://doi.org/10.1002/jsfa.6772
  17. Crous P.W., Lombard L., Sandoval-Denis M., Seifert K.A., Schroers H.-J., … Thines M, 2021. Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology 98: 100116. https://doi.org/10.1016/j.simyco.2021.100116
  18. Crowe F.J., 1995. Fusarium basal rot of garlic. In: Compendium of Onion and Garlic Diseases (Schwartz HF, Mohan SK, ed), St Paul, Minnesota, APS Press, pp. 11.
  19. Dugan F. M., Hellier B.C., Lupien S.L., 2003. First report of Fusarium proliferatum causing rot of garlic bulbs in North America. Plant Pathology 52: 426. https://doi.org/10.1094/PDIS-94-2-0277C
  20. Dugan F.M., 2007. Diseases and disease management in seed garlic: problems and prospects. American Journal of Plant Science and Biotechnology 1: 47–51.
  21. Dugan F.M., Hellier B.C., Lupien S.L., 2007. Pathogenic fungi in garlic seed cloves from the Unites States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington State. Journal of Phytopathology 155: 437–445. https://doi.org/10.1111/j.1439-0434.2007.01255.x
  22. Dugan F.M., Hellier B.C., Lupien S.L., 2011. Resistance to Penicillium allii in accessions from a national plant germoplasm system Allium collection. Crop Protection 30: 483–488. https://doi.org/10.1016/j.cropro.2010.12.021
  23. El-Komy M.H., Gao X., Almasrahi A., Ibrahim Y.E., Sharafaddin A.H., Saleh A.A., Hamad Y.K., 2023. First report of basal rot of onion caused by Fusarium oxysporum f. sp. cepae in Saudi Arabia. Plant Disease 107: 2854. https://doi.org/10.1094/PDIS-02-23-0333-PDN
  24. Elmer W.H., Summerell B.A., Burgess L.W., Nigh Jr. E.L., 1999. Vegetative compatibility groups in Fusarium proliferatum from asparagus in Australia. Mycologia 91: 650–654. https://doi.org/10.2307/3761251
  25. Elshahawy I.E., Saied N.M., Morsy A.A., 2017. Fusarium proliferatum, the main cause of clove rot during storage, reduces clove germination and causes wilt of established garlic plants. Journal of Plant Pathology 99: 85–93. https://doi.org/https://www.jstor.org/stable/44280576
  26. Felsenstein J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  27. Frisvad J.C., Samson R.A., 2004. Polyphasic taxonomy of Penicillium: a guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology 49: 1–173. https://doi.org/https://api.semanticscholar.org/CorpusID:90769261}
  28. Fritsch R.M., Friesen N., 2002. Evolution, domestication and taxonomy. In: Allium Crop Science: Recent Advances (Rabinowitch H.D., Currah L., ed.),. CABI, Wallingford, pp. 5-30
  29. Fuentes Y.M.O., Ortiz J.C.D., Chavez E.C., Castillo F.D.H., Olivas A.F., … Guerra R.R., 2013. The first report of Fusarium proliferatum causing garlic bulb rots in Mexico. African Journal of Agricultural Research 8: 570–573. https://doi.org/10.5897/AJAR12.1726
  30. Gálvez L. M., Urbaniak, Waśkiewicz A., Stępień Ł., Palmero D., 2017a. Fusarium proliferatum – Causal agent of garlic bulb rot in Spain: Genetic variability and mycotoxin production. Food Microbiology 67: 41–48. https://doi.org/10.1016/j.fm.2017.05.006
  31. Gálvez L., Redondas M.D., Palmero D., 2017b. In vitro and field efficacy of three fungicides against Fusarium bulb rot of garlic. European Journal of Plant Pathology 148: 321–328. https://doi.org/10.1007/s10658-016-1091-7
  32. Gálvez L., Palmero D., 2021. Incidence and aetiology of postharvest fungal diseases associated with bulb rot in garlic (Allium sativum) in Spain. Foods 10: 1063. https://doi.org/10.3390/foods10051063
  33. Gálvez L., Palmero D., 2022. Fusarium dry rot of garlic bulbs caused by Fusarium proliferatum: a review. Horticulturae 8: 628. https://doi.org/10.3390/horticulturae8070628
  34. Geiser D.M., Jimenez-Gasco M.D., Kang S.C., Makalowska I., Veeraghavan N., Ward T.J., … O’Donnel K., 2004. FUSARIUM-ID v. 1.0: A DNA sequence for identifying Fusarium. European Journal of Plant Pathology 110: 473–479. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0
  35. González-Estrada R.R., de Jesus Ascencio-Valle F., Ragazzo-Sánchez J.A., Santoyo M.C., 2017. Use of a marine yeast as a biocontrol agent of the novel pathogen Penicillium citrinum on Persian Lime. Emirates Journal of Food and Agriculture 29: 114–122. https://doi.org/10.9755/ejfa.2016-09-1273
  36. Greathead A.S., 1978. Control of Penicillium decay of garlic. California Agriculture 6: 18.
  37. Guenaoui C., Mang S., Figliuolo G., Naffati M., 2013. Diversity in Allium ampeloprasum: from small and wild to large and cultivated. Genetic Resources and Crop Evolution 60: 97–114. https://doi.org/10.1007/s10722-012-9819-5
  38. Han T.S., Zheng Q.J., Onstein R.E., Rojas-Andres B.M., Hauenschild F., … Xing Y.W., 2020. Polyploidy promotes species diversification of Allium through ecological shifts. New Phytologist 225: 571–583. https://doi.org/10.1111/nph.16098
  39. Horáková M.K., Tancik J., Barta M., 2021. Fusarium proliferatum causing dry rot of stored garlic in Slovakia. Journal of Plant Pathology 103: 997–1002. https://doi.org/10.1007/s42161-021-00883-5
  40. Houbraken J., Samson R.A., 2011. Phylogeny of Penicillium and segregation of Trichocomaceae into three families. Studies in Mycology 70: 1–51. https://doi.org/10.3114/sim.2011.70.01
  41. Ignjatov M.V., Bjelić D.D., Nokolić Z.T., Milošević D.N., Marinković J.B., … Gvozdanović-Varga J.M., 2017. Morphological and molecular identification of Fusarium tricinctum and Fusarium acuminatum as causal agents of garlic bulbs rot in Serbia. Zbornik Matice srpske za prirode nauke 133: 271–277. https://doi.org/10.2298/ZMSPN1733271I
  42. Ignjatov M.V., Vlajić S.A., Milošević D.N., Nikolić Z.T., Tamindžić G.D., … , Ivanović Z.S., 2019. Identification and phylogenetic analysis of Fusarium proliferatum isolated from elephant garlic Allium ampeloprasum L. Journal of Natural Sciences Novi Sad 137: 49–55. https://doi.org/10.2298/ZMSPN1937049I
  43. Johnson S.B., 2013. Blue mold of garlic. Cooperative Extension Publications, The University of Maine, Bullettin #1206 (available at https://extension.umaine.edu/publications/1206e/, accessed on 21 July, 2023).
  44. Kamle M., Mahato D.K., Devi S., Lee K.E., Kang S.G., Kumar P., 2019. Fumonisins: impact on agriculture, food and human health and their management strategies. Toxins 11: 328. https://doi.org/10.3390/toxins11060328
  45. Kaur R., Saxena S., 2023. Penicillium citrinum, a drought-tolerant endophytic fungus isolated from wheat (Triticum aestivum L.) leaves with plant growth-promoting abilities. Current Microbiology 80: 184. https://doi.org/10.1007/s00284-023-03283-3
  46. Keusgen M., Fritsch R.M., Hisoriev H., Kurbonova P.A., Khassanov F.O., 2006. Wild Allium species (Alliaceae) used in folk medicine of Tajikistan and Uzbekistan. Journal of Ethnobiology and Ethnomedicine 2: 18. https://doi.org/10.1186/1746-4269-2-18
  47. Khan I.H., Javaid A., 2023. Penicillium citrinum causing postharvest decay on stored garlic cloves in Pakistan. Journal of Plant Pathology 105: 337. https://doi.org/10.1007/s42161-022-01254-4
  48. Khan S.A., Hamayun M., Yoon H., Kim H.Y., Suh S.J., … Kim J.G., 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiology 8: 231. https://doi.org/10.1186/1471-2180-8-231
  49. Kim S., Kim D.B., Jin W., Park J., Yoon W., … Yoo M., 2018. Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.). Natural Product Research 32: 1193–1197. https://doi.org/10.1080/14786419.2017.1323211
  50. Kumar S., Stecher G., Tamura K., 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger dataset. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054
  51. Le D., Audenaert K., Haesaert G., 2021. Fusarium basal rot: profile of an increasingly important disease in Allium spp. Tropical Plant Pathology 46: 241–253. https://doi.org/10.1007/s40858-021-00421-9
  52. Leyronas C., Chretien P.L., Troulet C., Duffaud M., Villeneuve F., … Hunyadi H, 2018. First report of Fusarium proliferatum causing garlic clove rot in France. Plant Disease 102: 2658. https://doi.org/10.1094/PDIS-12-20-2743-PDN
  53. Mahmoody B., 1998. Fusarium oxysporum associated with garlic rot in Khorasan Province. Iranian Journal of Plant Pathology 34: 235–236.
  54. Min C., Dong H., Liu X., Zhang Z., 2019. Screening and identification of a Penicillium brevicompactum strain isolated from the fruiting body of Inonotus obliquus and the fermentation production of mycophenolic acid. Annals of Microbiology 69: 1351–1360. https://doi.org/10.1007/s13213-019-01517-z
  55. Ministry of Agricultural, Food and Forestry Policies, 2016. Sedicesima revisione dell’elenco nazionale dei prodotti agroalimentari tradizionali, G.U. n. 143 of June 21st, 2016, https://www.aglionevaldichiana.net/public/Documenti/Decreto_MiPAAF.pdf (accessed on 24 July 2023).
  56. Moharam M.H.A., Farrag E.S.H., Mohamed M.D.A., 2013. Pathogenic fungi in garlic seed cloves and first report of Fusarium proliferatum causing cloves rot of stored bulbs in Upper Egypt. Archives of Phytopathology and Plant Protection 46: 2096–2103. https://doi.org/10.1080/03235408.2013.785122
  57. Molinero-Ruiz L., Rubio-Pérez E., Gonzaléz-Dominquez E., Basallote-Ureba M.J., 2011. Alternative hosts for Fusarium spp. causing crown and root rot of asparagus in Spain. Journal of Phytopathology 159: 114–116. https://doi.org/10.1111/j.1439-0434.2010.01723.x
  58. Mondani L., Chiusa G., Battilani P., 2021a. Fungi associated with garlic during the cropping season, with focus on Fusarium proliferatum and F. oxysporum. Plant Health Progress 22: 37–46. https://doi.org/10.1094/PHP-06-20-0054-RS
  59. Mondani L., Chiusa G., Pietri A., Battilani P., 2021b. Monitoring the incidence of dry rot caused by Fusarium proliferatum in garlic at harvest and during the storage. Postharvest Biology and Technology 173: 111407. https://doi.org/10.1016/j.postharvbio.2020.111407
  60. Mondani L., Chiusa G., Battilani P., 2021c. Chemical and biological control of Fusarium species involved in garlic dry rot at early crop stages. European Journal of Plant Pathology 160: 575–587. https://doi.org/10.1007/s10658-021-02265-0
  61. Mondani L., Chiusa G., Battilani P., 2022. Efficacy of chemical and biological spray seed treatments in preventing garlic dry rot. Phytopathologia Mediterranea 61: 27–37. https://doi.org/10.36253/phyto-13103
  62. O’Donnell K., Kistler H.C., Cigelnik E., Ploetz R.C., 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of National Academy of Sciences USA 95: 2044–2049. https://doi.org/10.1073/pnas.95.5.2044
  63. Onaebi N.C., Ugwuja N.F., Okoro C.A., Amujiri N.A., Ivoke U.M., 2020. Mycoflora associated with post-harvest rot of onion (Allium cepa) and garlic (Allium sativum) bulbs. Research on Crops 21: 380–389. https://doi.org/10.31830/2348-7542.2020.064
  64. Onofri A., Pannacci E., 2014. Spreadsheet tools for biometry classes in crop science programmes. Communication in Biometry and Crop Science 9: 43–45.
  65. Overy D.P., Frisvad J.C., 2005. Mycotoxin production and post harvest storage rot of ginger (Zingiber officinale) by Penicillium brevicompactum. Journal of Food Protection 68: 607–609. https://doi.org/10.4315/0362-028X-68.3.607
  66. Overy D.P., Karlshoj K., Due M., 2005a. Low temperature growth and enzyme production in Penicillium ser. Corymbifera species, casual agents of blue mould storage rot in bulbs. Journal of Plant Pathology 87: 57–63. https://doi.org/10.4454/jpp.v87i1.897
  67. Overy D.P., Frisvad J.C., Steinmeier U., Thrane U., 2005b. Clarification of the agents causing blue mold storage rot upon various flower and vegetable bulbs: Implications for mycotoxin contamination. Postharvest Biology and Technology 35: 217–221. https://doi.org/10.1016/j.postharvbio.2004.08.001
  68. Palmero D., De Cara M., Nosir W., Iglesias C., Garcia M., … Tello J.C., 2010. First report of Fusarium proliferatum causing rot of garlic bulbs in Spain. Plant Disease 94: 277. https://doi.org/10.1094/PDIS-94-2-0277C
  69. Palmero Llamas D., Gálvez Patón L., García Díaz M., Gil Serna J., Benito S., 2013. The effects of storage duration, temperature and cultivar on the severity of garlic clove rot caused by Fusarium proliferatum. Postharvest Biology and Technology 78: 34–39. https://doi.org/10.1016/j.postharvbio.2012.12.003
  70. Pitt J.I., Hocking A.D., 1997. Fungi and food spoilage, 2nd eds. London, UK: Blackie Academic and Professional.
  71. Saitou N., Nei M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  72. Salvalaggio A.E., Ridao A.D.C., 2013. First report of Fusarium proliferatum causing rot on garlic and onion in Argentina. Plant Disease 97: 556. https://doi.org/10.1094/PDIS-05-12-0507-PDN
  73. Samson R.A., Hoekstra E.S., Frisvad J.C., 2004. Introduction to food- and airborne fungi, 7th edn. Centralbureau voor Schimmelcultures, Utrecht.
  74. Sankar R., Prasad Babu G., 2012. First report of Fusarium proliferatum causing rot of garlic bulbs (Allium sativum) in India. Plant Disease 96: 290. https://doi.org/10.1094/PDIS-08-11-0649
  75. Schwartz H.F., Mohan S.K., 2006. Compendium of Onion and Garlic Diseases and Pests, 2nd ed. APS Press, Minnesota, USA, p. 127.
  76. Slow Food Foundation, 2023. Slow Food Foundation for Biodiversity Onlus, Ark of Taste, Aglione della Chiana, https://www.fondazioneslowfood.com/it/arca-del-gusto-slow-food/aglione-della-chiana/ (accessed on 14th September 2023).
  77. Sintayehu A., Sakhuja P.K., Fininsa C., Ahmed S., 2011. Management of fusarium basal rot (Fusarium oxysporum f. sp. cepae) on shallot through fungicidal bulb treatment. Crop Protection 5: 560–565. https://doi.org/10.1016/j.cropro.2010.12.027
  78. Southwood M.J., Viljoen A., Mostert L., Rose L.J., McLeod A., 2012. Phylogenetic and biological characterization of Fusarium oxysporum isolates associated with onion in South Africa. Plant Disease 96: 1250–1261. https://doi.org/10.1094/PDIS-10-11-0820-RE
  79. Stankovic S., Levic J., Petrovic T., Logrieco A., Moretti A. 2007. Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. European Journal of Plant Pathology 118: 165–172. https://doi.org/10.1007/s10658-007-9126-8
  80. Tamura K., Nei M., Kumar S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences USA 101: 11030–11035. https://doi.org/10.1073/pnas.0404206101
  81. Taylor A., Vágány V., Jackson A.C., Harrison R.J., Rainoni A., Clarkson J.P., 2016. Identification of pathogenicity-related genes in Fusarium oxysporum f.sp. cepae. Molecular Plant Pathology 17: 1031–1047. https://doi.org/10.1111/mpp.12346
  82. Terzaroli N., 2015. Caratterizzazione genetica dell’Aglione (Allium ampeloprasum) della Val di Chiana (Bachelor thesis). University of Perugia.
  83. Terzaroli N., Caproni L., 2020. “Aglione della Val di Chiana”, a white gentle giant. Landraces, 23.
  84. Terzaroli N., Marconi G., Russi L., Albertini E., 2022. Phenotypic and genetic characterization of “Aglione della Valdichiana”: population structure and genetic relationship analysis of a white gentle giant. Scientia Horticulturae 293: 110673. https://doi.org/10.1016/j.scienta.2021.110673
  85. Tonti S., Dal Prà M., Nipoti P., Prodi A., Alberti I., 2012. First report of Fusarium proliferatum causing rot of stored garlic bulbs (Allium sativum L.) in Italy. Journal of Phytopathology 160: 761–763. https://doi.org/10.1111/jph.12018
  86. Tonti S., Mandrioli M., Nipoti P., Pisi A., Gallina Tuschi T., Prodi A., 2017. Detection of fumonisins in fresh and dehydrated commercial garlic. Journal of Agricultural and Food Chemistry 16: 7000–7005. https://doi.org/10.1021/acs.jafc.7b02758
  87. Tuscany Region, 2016. Aggiornamento per l’anno 2016 dell’elenco dei prodotti agroalimentari tradizionali della Toscana, Decreto Esecutivo Regione Toscana 1569, 04/04/2016, https://www.aglionevaldichiana.net/public/Documenti/Decreto_Regione_Toscana.pdf (accessed on 25 July 2023).
  88. Umbria Region, 2020. Legge Regionale 12/2015, Tutela delle Risorse Genetiche Autoctone di Interesse Agrario, Aglione, Numero Iscrizione 69, 16/12/2020, https://biodiversita.umbria.parco3a.org/risorsa/aglione/#5
  89. Valdez J.G., Makuch M.A., Ordovini A.F., Masuelli R.W., Overy D.P., Piccolo R.J., 2006. First report of Penicillium allii as a field pathogen of garlic (Allium sativum). Plant Pathology 55: 583. https://doi.org/10.1111/j.1365-3059.2006.01411.x
  90. Valdez J.G., Makuch M.A., Ordovini A.F., Frisvad J.C., Overy D.P., … Piccolo R.J., 2009. Identification, pathogenicity and distribution of Penicillium spp. isolated from garlic in two regions in Argentina. Plant Pathology 58: 352–361. https://doi.org/10.1111/j.1365-3059.2008.01960.x
  91. Vincent M.A., Pitt J.I., 1989. Penicillium allii, a new species from Egyptian garlic. Mycologia 81: 300–303. https://doi.org/https://doi.org/10.2307/3759715
  92. Visagie C.M., Houbraken J., Frisvad J.C., Hong S.B., Klaassen C.H.W., … Samson RA 2014. Identification and nomenclature of the genus Penicillium. Studies in Mycology 78: 343–371. https://doi.org/10.1016/j.simyco.2014.09.001
  93. Wang K., Jin P., Han L., Shang H., Tang S., Rui H., … Zheng Y., 2014. Methyl jasmonate induces resistance against Penicillium citrinum in Chinese bayberry by priming of defense responses. Postharvest Biology and Technology 98: 90–97. https://doi.org/10.1016/j.postharvbio.2014.07.009