Vol. 63 No. 1 (2024)
Articles

Combined interaction between the diazotrophic Niallia circulans strain YRNF1 and arbuscular mycorrhizal fungi in promoting growth of eggplant and mitigating root rot stress caused by Rhizoctonia solani

Younes M. RASHAD
Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934
Nahla Alsayd BOUQELLAH
Biology Department, College of Science, Taibah University, 42317-8599, Al Madinah Al Munawwarah
Mohamed HAFEZ
Land and Water Technologies Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, 21934
Sara A. ABDALLA
Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934
Mohamed M. SLEEM
Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934
Adel K. MADBOULY
Microbiology Department, Faculty of Science, University of Ain Shams, Abbassia, Cairo

Published 2024-04-09

Keywords

  • Biocontrol,
  • mycorrhization,
  • antifungal activity,
  • biofertilizer,
  • biofungicide

How to Cite

[1]
Y. M. RASHAD, N. A. BOUQELLAH, M. HAFEZ, S. A. ABDALLA, M. M. SLEEM, and A. K. MADBOULY, “Combined interaction between the diazotrophic Niallia circulans strain YRNF1 and arbuscular mycorrhizal fungi in promoting growth of eggplant and mitigating root rot stress caused by Rhizoctonia solani”, Phytopathol. Mediterr., vol. 63, no. 1, pp. 25–43, Apr. 2024.

Abstract

Rhizoctonia root rot of eggplant, caused by Rhizoctonia solani, is an economically important disease. Niallia circulans YRNF1 and arbuscular mycorrhizal fungi (AMF) were assessed for their biocontrol and biofertilizing effects against R. solani, as potential replacements for synthetic fungicides and fertilizers. The diazotrophic N. circulans YRNF1, isolated from soil, reduced in vitro growth of R. solani by 42%. GC-MS analysis of culture filtrate of N. circulans YRNF1 detected bioactive compounds, including butyric acid (85%) and ethylene glycol (8%). In greenhouse experiments, combined application of N. circulans YRNF1 and AMF reduced the severity of eggplant root rot by 26%. This combined treatment triggered the transcriptional expression of five resistance genes (JERF3, PAL1, C3H, CHI2, and HQT) in the treated eggplants. Biochemical analyses of the infected eggplant roots treated with the combined bio-inoculants showed enhancement of the phenol content (+188%), and increased antioxidant enzyme activity, mainly of POD (+104%) and PPO (+72%). Combined application of N. circulans YRNF1 and AMF also promoted eggplant growth and improved the total NPK concentrations in treated plant leaves. Inoculation of eggplant with N. circulans YRNF1 in the presence of AMR increased the mycorrhization level. This is the first report of N. circulans and AMF as potential agents for biological control of Rhizoctonia root rot and growth promotion of eggplant.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Abdelraouf R.E, Abdou S.M.M., Mahmoud Abbas M.M., Hafez M., Popov A.I., Hamed L.M.M., 2020. Influence of N-fertigation stress and agro-organic wastes (biochar) to improve yield and water productivity of sweet pepper under sandy soils conditions. Plant Archives 20(1): 3208–3217. DOI: https://doi.org/10.3923/ajps.2021.143.156
  2. AbouloifaH., Hasnaoui I., Rokni Y, Bellaouchi R., Ghabbour N., … Asehraou A., 2022. Chapter Two - Antifungal activity of lactic acid bacteria and their application in food biopreservation. Advances in Applied Microbiology 120: 33–77. https://doi.org/10.1016/bs.aambs.2022.07.001 DOI: https://doi.org/10.1016/bs.aambs.2022.07.001
  3. Adolfsson L., Solymosi K., Andersson M.X., Keresztes Á., Uddling J., … Spetea C., 2015. Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production. PLoS One 10(1): e0115314. https://doi.org/10.1371/journal.pone.0115314 DOI: https://doi.org/10.1371/journal.pone.0115314
  4. Al-Askar A.A., Abdulkhair W.M., Rashad Y.M., Hafez E.E., Ghoneem K.M., Baka Z.A., 2014. Streptomyces griseorubens E44G: A potent antagonist isolated from soil in Saudi Arabia. Journal of Pure and Applied Microbiology 8: 221–230.
  5. Almammory M.K.N., Matloob A.A.H., 2019. Efficiency of Trichoderma harzianum and bio-fertilizer Bokashi and salicylic acid in the control of fungi causing Eggplant damping off disease. Plant Archives 19(1): 73–82.
  6. André C.M., Schafleitner R., Legay S., Lefèvre I., Aliaga C.A.A., … Evers D., 2009. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry 70(9): 1107–1116. https://doi.org/10.1016/j.phytochem.2009.07.008 DOI: https://doi.org/10.1016/j.phytochem.2009.07.008
  7. Baite M.S., Khokhar M.K., Meena R.P., 2021. Management of False Smut Disease of Rice: A Review, In: Cereal Grains (A.K. Goyal, ed.), IntechOpen 1. https://doi.org/10.5772/intechopen.97329 DOI: https://doi.org/10.5772/intechopen.97329
  8. Bello S.K., Muraina T.O., Jimoh S.O., Olasupo I.O., Usman S., 2023. Phosphorus Nutrition Enhancement of Biological Nitrogen Fixation in Pastures. In: Sustainable Agriculture Reviews (Iqbal A., et al., ed), Springer, Cham., 58. https://doi.org/10.1007/978-3-031-16155-1_10 DOI: https://doi.org/10.1007/978-3-031-16155-1_10
  9. Berendsen R.L., Pieterse C.M.J., Bakker P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17: 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 DOI: https://doi.org/10.1016/j.tplants.2012.04.001
  10. Chao N., Wang R.F., Hou C., Yu T., Miao K., … Liu L., 2021. Functional characterization of two chalcone isomerase (CHI) revealing their responsibility for anthocyanins accumulation in mulberry. Plant Physiology and Biochemistry 161: 65–73. https://doi.org/10.1016/j.plaphy.2021.01.044 DOI: https://doi.org/10.1016/j.plaphy.2021.01.044
  11. Chin J.M., Lim Y.Y., Ting A.S.Y., 2022. Biopriming chilli seeds with Trichoderma asperellum: A study on biopolymer compatibility with seed and biocontrol agent for disease suppression. Biological Control 165: 104819. https://doi.org/10.1016/j.biocontrol.2021.104819 DOI: https://doi.org/10.1016/j.biocontrol.2021.104819
  12. Cook R.J., Schillinger W.F., Christensen N.W., 2002. Rhizoctonia root rot and take-all of wheat in diverse direct-seed spring cropping systems. Canadian Journal of Plant Pathology 24: 349–358. https://doi.org/10.1080/07060660209507020 DOI: https://doi.org/10.1080/07060660209507020
  13. Coskun D., Britto D.T., Kronzucker H.J., 2010. Regulation and mechanism of potassium release from barley roots: an in planta 42K+ analysis. New Phytologist 188(4): 1028–1038. https://doi.org/10.1111/j.1469-8137.2010.03436.x DOI: https://doi.org/10.1111/j.1469-8137.2010.03436.x
  14. Coskun D., Britto D.T., Kronzucker H.J., 2017. The nitrogen–potassium intersection: membranes, metabolism, and mechanism. Plant, Cell & Environment 40: 2029–2041. https://doi.org/10.1111/pce.12671 DOI: https://doi.org/10.1111/pce.12671
  15. de Oliveira E.P., de Souza Soares P.P., Santos G.L., Coutrim R.L., do Val de Assis F.G., … Leal, P.L., 2022. Single inoculation with arbuscular mycorrhizal fungi promotes superior or similar effects on cowpea growth compared to co-inoculation with Bradyrhizobium. South African Journal of Botany 151: 941–948. https://doi.org/10.1016/j.sajb.2022.11.011 DOI: https://doi.org/10.1016/j.sajb.2022.11.011
  16. Devi N.O., Devi R.K.T., Debbarma M., Hajong M., Thokchom S., 2022. Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Egyptian Journal of Biological Pest Control 32: 1. https://doi.org/10.1186/s41938-021-00499-y DOI: https://doi.org/10.1186/s41938-021-00499-y
  17. Dias M.C., Pinto D., Silva A.M.S., 2021. Plant flavonoids: Chemical characteristics and biological activity. Molecules 26(17): 5377. https://doi.org/10.3390/molecules26175377 DOI: https://doi.org/10.3390/molecules26175377
  18. Döbereiner J., 1988. Isolation and identification of root associated diazotrophs. Plant Soil 110: 207–212. https://doi.org/10.1007/BF02226800 DOI: https://doi.org/10.1007/BF02226800
  19. dos Santos H.R.M., Argolo C.S., Argôlo-Filho R.C., Loguercio L.L., 2019. A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiology 19: 74. https://doi.org/10.1186/s12866-019-1446-2 DOI: https://doi.org/10.1186/s12866-019-1446-2
  20. Elshafie H.S., Camele I., Mohamed A.A.A., 2023. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International Journal of Molecular Sciences 24(4): 3266. https://doi.org/10.3390/ijms24043266 DOI: https://doi.org/10.3390/ijms24043266
  21. El-Sharkawy H.H.A., Rashad Y.M., Elazab N.T., 2022. Synergism between Streptomyces viridosporus HH1 and Rhizophagus irregularis Effectively Induces Defense Responses to Fusarium Wilt of Pea and Improves Plant Growth and Yield. Journal of Fungi 8: 683. https://doi.org/10.3390/jof8070683 DOI: https://doi.org/10.3390/jof8070683
  22. El-Sharkawy H.H.A., Rashad Y.M., Elazab N.T., 2023. Induction of multiple defense responses in wheat plants against stripe rust using mycorrhizal fungi and Streptomyces viridosporus HH1. BioControl 68: 525–535. https://doi.org/10.1007/s10526-023-10207-4 DOI: https://doi.org/10.1007/s10526-023-10207-4
  23. FAOSTAT, 2024. Food and Agriculture Organization of the United Nations. 10 World’s biggest producers of eggplants. Available at: https://en.wikipedia.org/wiki/List_of_countries_by_eggplant_production
  24. Ferreira J.H., Mathee F.N., Thomas A.C., 1991. Biological control of Eutypalota on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 81: 283–287. DOI: https://doi.org/10.1094/Phyto-81-283
  25. Forman H.J., Zhang H., 2021. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery 20(9): 689–709. https://doi.org/10.1038/s41573-021-00233-1 DOI: https://doi.org/10.1038/s41573-021-00233-1
  26. Fuentes A., Ortiz J., Saavedra N., Salazar L.A., Meneses C., Arriagada, C., 2016. Reference gene selection for quantitative real-time PCR in Solanum lycopersicum L. inoculated with the mycorrhizal fungus Rhizophagus irregularis. Plant Physiology and Biochemistry 101: 124–131. http://dx.doi.org/10.1016/j.plaphy.2016.01.022 DOI: https://doi.org/10.1016/j.plaphy.2016.01.022
  27. Garnier L., Penland M., Thierry A., Maillard M-B., Jardin J., … Mounier, J., 2020. Antifungal activity of fermented dairy ingredients: Identification of antifungal compounds. International Journal of Food Microbiology 322: 108574. https://doi.org/10.1016/j.ijfoodmicro.2020.108574 DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108574
  28. Gong Y., Toivonen P., Lau O.L., Wiersma P.A., 2001. Antioxidant system level in ‘Braeburn’ apple is related to its browning disorder. Botanical Bulletin of Academia Sinica 42: 259–264.
  29. Goyal K., Singh N., Jindal S., Kaur R., Goyal A., Awasthi R., 2022. Kjeldahl Method. In: Advanced Techniques of Analytical Chemistry (Goyal A., Kumar H., ed.), 11: 105–112. https://doi.org/10.2174/9789815050233122010011 DOI: https://doi.org/10.2174/9789815050233122010011
  30. Hafez M., Abdallah A.M., Mohamed A.E., Rashad M., 2022. Influence of environmental-friendly bio-organic ameliorants on abiotic stress to sustainable agriculture in arid regions: A long term greenhouse study in northwestern Egypt. Journal of King Saud University-Science 34(6): 102212. https://doi.org/10.1016/j.jksus.2022.102212 DOI: https://doi.org/10.1016/j.jksus.2022.102212
  31. Han Z., Zhang Z., Li Y., Wang B., Xiao Q., … Chen, J., 2023. Effect of Arbuscular mycorrhizal fungi (AMF) inoculation on endophytic bacteria of lettuce. Physiological and Molecular Plant Pathology 126: 102036. https://doi.org/10.1016/j.pmpp.2023.102036 DOI: https://doi.org/10.1016/j.pmpp.2023.102036
  32. Hollomon D.W., 2015. Fungicide Resistance: Facing the Challenge-a Review. Plant Protection Science 51(4): 170–176. https://doi.org/10.17221/42/2015-PPS DOI: https://doi.org/10.17221/42/2015-PPS
  33. Jasim B., Benny R., Sabu R., Mathew J., Radhakrishnan E.K., 2016. Metabolite and mechanistic basis of antifungal property exhibited by endophytic Bacillus amyloliquefaciens BmB1. Applied Biochemistry and Biotechnology 179: 830–845. https://doi.org/10.1007/s12010-016-2034-7 DOI: https://doi.org/10.1007/s12010-016-2034-7
  34. Kaniyassery A., Thorat S.A., Kiran K.R., Murali T.S., Muthusamy A., 2022. Fungal diseases of eggplant (Solanum melongena L.) and components of the disease triangle: A review. Journal of Crop Improvement 37(4): 543–594. https://doi.org/10.1080/15427528.2022.2120145 DOI: https://doi.org/10.1080/15427528.2022.2120145
  35. Kifle M.H., Laing M.D., 2016. Isolation and Screening of Bacteria for Their Diazotrophic Potential and Their Influence on Growth Promotion of Maize Seedlings in Greenhouses. Frontiers in Plant Science 6: 1225. https://doi.org/10.3389/fpls.2015.01225 DOI: https://doi.org/10.3389/fpls.2015.01225
  36. Krouk G., Kiba T., 2020. Nitrogen and phosphorus interactions in plants: from agronomic to physiological and molecular insights. Current Opinion in Plant Biology 57: 104–109. https://doi.org/10.1016/j.pbi.2020.07.002 DOI: https://doi.org/10.1016/j.pbi.2020.07.002
  37. Liu Y., Zhang G., Luo X., Hou E., Zheng M., Zhang L., He X., Shen W., Wen D., 2021. Mycorrhizal fungi and phosphatase involvement in rhizosphere phosphorus transformations improves plant nutrition during subtropical forest succession. Soil Biology and Biochemistry 153: 108099. https://doi.org/10.1016/j.soilbio.2020.108099 DOI: https://doi.org/10.1016/j.soilbio.2020.108099
  38. Losada-Barreiro S., Sezgin-Bayindir Z., Paiva-Martins F., Bravo-Díaz C., 2022. Biochemistry of antioxidants: Mechanisms and pharmaceutical applications. Biomedicines 10(12): 3051. https://doi.org/10.3390/biomedicines10123051 DOI: https://doi.org/10.3390/biomedicines10123051
  39. Lugtenberg B., Kamilova F., 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63: 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918 DOI: https://doi.org/10.1146/annurev.micro.62.081307.162918
  40. Ma Q.H., Zhu H.H., Han J.Q., 2017. Wheat ROP proteins modulate defense response through lignin metabolism. Plant Science 262: 32–38. https://doi.org/10.1016/j.plantsci.2017.04.017 DOI: https://doi.org/10.1016/j.plantsci.2017.04.017
  41. Mathur S., Sharma M.P., Jajoo A., 2018. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B: Biology 180: 149–154. https://doi.org/10.1016/j.jphotobiol.2018.02.002 DOI: https://doi.org/10.1016/j.jphotobiol.2018.02.002
  42. Mehta P., Walia A., Kulshrestha S., Chauhan A., Shirkot C.K., 2015. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of Basic Microbiology 55: 33–44. https://doi.org/10.1002/jobm.201300562 DOI: https://doi.org/10.1002/jobm.201300562
  43. Mouradov A., Spangenberg G., 2014. Flavonoids: a metabolic network mediating plants adaptation to their real estate. Frontiers in Plant Science 5: 1–16. https://doi.org/10.3389/fpls.2014.00620 DOI: https://doi.org/10.3389/fpls.2014.00620
  44. Nafady N.A., Hashem M., Hassan E.A., Ahmed H.A.M., Alamri S.A., 2019. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases. Biological Control 138: 104049. https://doi.org/10.1016/j.biocontrol.2019.104049 DOI: https://doi.org/10.1016/j.biocontrol.2019.104049
  45. Nasr-Esfahani M., Hashemi L., Nasehi A., Nasr-Esfahani A., Nasr Esfahani A., 2020. Novel Cucumis enzymes associated with host-specific disease resistance to Phytophthora melonis Katsura. Biotechnology & Biotechnological Equipment 34(1): 873–884. https://doi.org/10.1080/13102818.2020.1810123 DOI: https://doi.org/10.1080/13102818.2020.1810123
  46. Niggeweg R., Michael A.J., Martin C., 2004. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology 22: 746–754. https://doi.org/10.1038/nbt966 DOI: https://doi.org/10.1038/nbt966
  47. Nisa K., Rosyida V.T., Nurhayati S., Indrianingsih A.W., Darsih C., Apriyana W., 2019. Total phenolic contents and antioxidant activity of rice bran fermented with lactic acid bacteria. IOP Conference Series: Earth and Environmental Science 251: 012020. https://doi.org/10.1088/1755-1315/251/1/012020 DOI: https://doi.org/10.1088/1755-1315/251/1/012020
  48. Phillips J.M., Hayman D.S., 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55: 158–IN18. https://doi.org/10.1016/S0007-1536(70)80110-3 DOI: https://doi.org/10.1016/S0007-1536(70)80110-3
  49. Pozo M.J., López-Ráez J.A., Azcón-Aguilar C., García-Garrido J.M., 2015. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist 205: 1431–1436. https://doi.org/10.1111/nph.13252 DOI: https://doi.org/10.1111/nph.13252
  50. Ramaroson M.L., Koutouan C., Helesbeux J.J., Le Clerc V., Hamama L., Geoffriau E., Briard M., 2022. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules 27: 8371. https://doi.org/10.3390/molecules27238371 DOI: https://doi.org/10.3390/molecules27238371
  51. Rashad Y.M., Aseel D.G., Hafez E.E., 2018. Antifungal potential and defense gene induction in maize against Rhizoctonia root rot by seed extract of Ammi visnaga (L.) Lam. Phytopathologia Mediterranea 57(1): 73–88. https://doi.org/10.14601/Phytopathol_Mediterr-21366
  52. Rashad Y.M., Aseel D.G., Hammad S.M., 2020a. Phenolic Compounds against Fungal and Viral Plant Diseases. In: Plant Phenolics in Sustainable Agriculture (Lone R., Shuab R., Kamili A., ed.), Springer Nature, Singapore, Pte Ltd, 201–219. https://doi.org/10.1007/978-981-15-4890-1_9 DOI: https://doi.org/10.1007/978-981-15-4890-1_9
  53. Rashad Y.M., Aseel D.G., Hammad S.M., ElKelish A.A., 2020b. Rhizophagus irregularis and Rhizoctonia solani differentially elicit systemic transcriptional expression of polyphenol biosynthetic pathways genes in sunflower. Biomolecules 10(3): 379. https://doi.org/10.3390/biom10030379 DOI: https://doi.org/10.3390/biom10030379
  54. Rashad Y.M., Abbas M.A., Soliman H.M., Abdel-Fattah G.G., Abdel-Fattah G.A., 2020c. Synergy between endophytic Bacillus amyloliquefaciens GGA and arbuscular mycorrhizal fungi induces plant defense responses against white rot of garlic and improves host plant growth. Phytopathologia Mediterranea 59(1): 169–186. https://doi.org/10.36253/phyto-11019 DOI: https://doi.org/10.36253/phyto-11019
  55. Rashad Y.M., El-Sharkawy H.H.A., Elazab N.T., 2022a. Ascophyllum nodosum Extract and Mycorrhizal Colonization Synergistically Trigger Immune Responses in Pea Plants against Rhizoctonia Root Rot, and Enhance Plant Growth and Productivity. Journal of Fungi 8: 268. https://doi.org/10.3390/jof8030268 DOI: https://doi.org/10.3390/jof8030268
  56. Rashad Y.M., Abdalla S.A., Shehata A.S., 2022b. Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize. BMC Microbiology 22: 229. https://doi.org/10.1186/s12866-022-02651-6 DOI: https://doi.org/10.1186/s12866-022-02651-6
  57. Rashad M., Hafez M., Popov A., Gaber H., 2023. Toward sustainable agriculture using extracts of natural materials for transferring organic wastes to environmental-friendly ameliorants in Egypt, International Journal of Environmental Science and Technology 20(7): 7417–7432. https://link.springer.com/article/10.1007/s13762-022-04438-8 DOI: https://doi.org/10.1007/s13762-022-04438-8
  58. Sarmiento-López L.G., López-Meyer M., Maldonado-Mendoza I.E., Quiroz-Figueroa F.R., Sepúlveda-Jiménez G., Rodríguez-Monroy M., 2022. Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. Journal of Bioscience and Bioengineering 134(1): 21–28. https://doi.org/10.1016/j.jbiosc.2022.03.007 DOI: https://doi.org/10.1016/j.jbiosc.2022.03.007
  59. Schmittgen T.D., Livak K.J., 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3: 1101–1108. https://doi.org/10.1038/nprot.2008.73 DOI: https://doi.org/10.1038/nprot.2008.73
  60. Shameem M.R., Sonali J.M.I., Kumar P.S., Rangasamy G., Gayathri K.V., Parthasarathy V., 2023. Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil. Environmental Research 220: 115200. https://doi.org/10.1016/j.envres.2022.115200 DOI: https://doi.org/10.1016/j.envres.2022.115200
  61. Sharma K., Kapoor R., 2023. Arbuscular mycorrhiza differentially adjusts central carbon metabolism in two contrasting genotypes of Vigna radiata (L.) Wilczek in response to salt stress. Plant Science 332: 111706. https://doi.org/10.1016/j.plantsci.2023.111706 DOI: https://doi.org/10.1016/j.plantsci.2023.111706
  62. Shrestha H.K., Fichman Y., Engle N.L., Tschaplinski T.J., Mittler R., … Abraham P.E., 2022. Multi-omic characterization of bifunctional peroxidase 4-coumarate 3-hydroxylase knockdown in Brachypodium distachyon provides insights into lignin modification-associated pleiotropic effects. Frontiers in Plant Science 13: 908649. https://doi.org/10.3389/fpls.2022.908649 DOI: https://doi.org/10.3389/fpls.2022.908649
  63. Singh H.P., Ravindranath S.D., 1994. Occurrence and distribution of polyphenol oxidase activity in floral organs of some standard and local cultivars of tea. Journal of the Science of Food and Agriculture 64: 117–120. https://doi.org/10.1002/jsfa.2740640117 DOI: https://doi.org/10.1002/jsfa.2740640117
  64. Singh B., Kumar M., Cabral-Pinto M.M., Bhatt B.P., 2022. Seasonal and altitudinal variation in chemical composition of Celtis australis L. tree foliage. Land 11(12): 2271. https://doi.org/10.3390/land11122271 DOI: https://doi.org/10.3390/land11122271
  65. Singh U.B., Malviyaa D., Wasiullaha Singha S., Pradhana J.K., … Sharma A.K., 2016. Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.). Microbiological Research 192: 300–312. https://doi.org/10.1016/j.micres.2016.08.007 DOI: https://doi.org/10.1016/j.micres.2016.08.007
  66. Singleton V.L., Orthofer R., Lamuela-Raventos R.M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1 DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
  67. Song Z., Bi Y., Zhang J., Gong Y., Yang H., 2020. Arbuscular mycorrhizal fungi promote the growth of plants in the mining associated clay. Scientific Reports 10: 2663. https://doi.org/10.1038/s41598-020-59447-9 DOI: https://doi.org/10.1038/s41598-020-59447-9
  68. Spatafora J.W., Chang Y., Benny G.L., Lazarus K., Smith M.E., … Stajich J.E., 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5): 1028–1046. https://doi.org/10.3852/16-042 DOI: https://doi.org/10.3852/16-042
  69. Taheri P., Tarighi S., 2010. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology 167(3): 201–208. http://dx.doi.org/10.1016/j.jplph.2009.08.003 DOI: https://doi.org/10.1016/j.jplph.2009.08.003
  70. Tan J.W., Thong K.L., Arumugam N.D., Cheah W.L., Lai Y.W., … Vikineswary S., 2009. Development of a PCR assay for the detection of nifH and nifD genes in indigenous photosynthetic bacteria. International Journal of Hydrogen Energy 34(17): 7538–7541. https://doi.org/10.1016/j.ijhydene.2009.04.029 DOI: https://doi.org/10.1016/j.ijhydene.2009.04.029
  71. Tao S., Wang D., Jin C., Sun W., Liu X., … Khanizadeh, S., 2015. Cinnamate-4-Hydroxylase Gene Is Involved in the Step of Lignin Biosynthesis in Chinese White Pear. Journal of the American Society for Horticultural Science 140(6): 573–579. https://doi.org/10.21273/JASHS.140.6.573 DOI: https://doi.org/10.21273/JASHS.140.6.573
  72. Trouvelot A., Kough J.L., Gianinazzi-Pearson V., 1986. Estimation of VA mycorhizal infection levels. Research for method having a functional significance. In: Proceedings of the 1st European Symposium on Mycorrhizae. (Gianinazzi S., Gianinazzi-Pearson V., eds), INRA, Paris, 217–221.
  73. Turk-Kubo K.A., Achilles K.M., Serros T.R.C., Ochiai M., Montoya J.P., Zehr J.P., 2012. Nitrogenase (nifH) gene expression in diazotrophic cyanobacteria in the Tropical North Atlantic in response to nutrient amendments. Frontiers in Microbiology 3: 386. https://doi.org/10.3389/fmicb.2012.00386 DOI: https://doi.org/10.3389/fmicb.2012.00386
  74. Vuai S.A.H., Sahini M.G., Sule K.S., Ripanda A.S., Mwanga H.M., 2022. A comparative in-vitro study on antimicrobial efficacy of on-market alcohol-based hand washing sanitizers towards combating microbes and its application in combating Covid-19 global outbreak. Heliyon 8(11): E11689. https://doi.org/10.1016/j.heliyon.2022.e11689 DOI: https://doi.org/10.1016/j.heliyon.2022.e11689
  75. Wen K., Seguin P., Arnaud M.S., Jabaji-Hare S., 2005. Real-Time quantitative RT-PCR of defense associated gene transcripts of Rhizoctonia solani infected bean seedlings in response to inoculation with a nonpathogenic binucleate Rhizoctonia isolate. Phytopathology 95(4): 345–353. https://doi.org/10.1094/PHYTO-95-0345 DOI: https://doi.org/10.1094/PHYTO-95-0345
  76. Young J.P.W., 1992. Phylogenetic classification of nitrogen-fixing organisms. In: Biological Nitrogen Fixation (Stacey G., Burris R.H., Evans H.J., eds), Chapman and Hall, New York, NY, 43–86.
  77. Youssef S.A., Tartoura K.A., Abdelraouf G.A., 2016. Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biological Control 100: 79–86. https://doi.org/10.1016/j.biocontrol.2016.06.001 DOI: https://doi.org/10.1016/j.biocontrol.2016.06.001
  78. Zhang Z., Schwartz S., Wagner L., Miller W., 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7(1–2): 203–214. https://doi.org/10.1089/10665270050081478 DOI: https://doi.org/10.1089/10665270050081478
  79. Zhou W., Nielsen J.B., Fritsche L.G., Dey R., Gabrielsen M.E., … Lee, S., 2018. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nature Genetics 50: 1335–1341. https://doi.org/10.1038/s41588-018-0184-y DOI: https://doi.org/10.1038/s41588-018-0184-y