Vol. 59 No. 3 (2020): 11th IWGTD - Special issue on Grapevine Trunk Diseases
Research papers - 11th Special issue on Grapevine Trunk Diseases

Pythium oligandrum induces grapevine defence mechanisms against the trunk pathogen Neofusicoccum parvum

Amira YACOUB
INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France
Rana HAIDAR
INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France
Jonathan GERBORE
BIOVITIS, 15400 Saint Etienne de Chomeil, France
Clementine MASSON
INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France
Marie-Cécile DUFOUR
INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France
Remy GUYONEAUD
Université de Pau et des Pays de l’Adour / E2S UPPA / CNRS, Institut des Sciences Analytiques et de Physicochimie pour l‘Environnement et les Matériaux – UMR 5254, Microbial Ecology, IBEAS Avenue de l’Université 64013, Pau, France
Patrice REY
INRAE, UMR 1065 Santé et Agroécologie du Vignoble (SAVE), Institut des Sciences de la vigne et du Vin (ISVV), 33883 Villenave d’Ornon, France

Published 2020-10-30

Keywords

  • Biocontrol,
  • induced resistance,
  • gene expression

How to Cite

[1]
A. YACOUB, “Pythium oligandrum induces grapevine defence mechanisms against the trunk pathogen Neofusicoccum parvum”, Phytopathol. Mediterr., vol. 59, no. 3, pp. 565–580, Oct. 2020.

Abstract

Grapevine trunk diseases (GTDs) are increasing in vineyards in many grape production regions. Among the pathogens causing these diseases, Neofusicoccum parvum, is one of the most frequent and virulent. To control GTDs, biocontrol is being developed using plant beneficial microorganisms. Strains of the oomycete Pythium oligandrum have been shown to naturally colonize grapevine roots in vineyards in several countries in Europe. This study examined the ability of the root-coloniser P. oligandrum to induce grapevine resistance against N. parvum, by deciphering the gene expression changes in a set of 62 genes involved in different grapevine defence pathways. Two greenhouse assays showed that the wood necrosis of vine cuttings caused by N. parvum was reduced by 65% when P. oligandrum colonized root systems of the plants. The relative expression levels of selected genes in the host trunks were studied by real-time PCR. Plant responses were assessed after inoculation by P. oligandrum and/or N. parvum, at three different sampling time points (0, 14 and 150 d after N. parvum inoculation). Sampling time influenced gene expressions for the different inoculation treatments. At each sampling time, specific host responses to the different treatments were also detected, for controls, and for inoculations with P. oligandrum, N. parvum or P. oligandrum + N. parvum. When P. oligandrum colonized grapevine root systems, inoculation with the pathogen was associated with increased  up-regulation and over-expression of particular genes, including those regulating Pathogen-Related proteins, cell wall reinforcement proteins and hormone signalling pathways. A priming effect of the grapevine defence system was induced in roots colonized by P. oligandrum.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Alfonzo A., Conigliaro G., Torta L., Burruano S., Moschetti G., 2009. Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens. Phytopathologia Mediterranea 48: 155-158. DOI: 10.14601/Phytopathol_Mediterr-2886.
Bellée A., Cluzet S., Dufour M.-C., Mérillon J.-M., Corio-Costet M.-F., 2018. Comparison of the Impact of Two Molecules on Plant Defense and on Efficacy against Botrytis cinerea in the Vineyard: A Plant Defense Inducer (Benzothiadiazole) and a Fungicide (Pyrimethanil). J. Agric. Food Chemistry 66: 3338–3350. DOI: 10.1021/acs.jafc.7b05725.
Benhamou N., le Floch G., Vallance J., Gerbore J., Grizard D., Rey P., 2012. Pythium oligandrum: an example of opportunistic success. Microbiology 58: 2679-2694. DOI: 10.1099/mic.0.061457-0.
Bertsch C., Ramírez-Suero M., Magnin-Robert M., Larignon P., Chong J., … Fontaine F., 2013. Grapevine trunk diseases: complex and still poorly understood. Plant Pathology 62: 243–265. DOI: 10.1111/j.1365-3059.2012.02674.x.
Billones-Baaijens R., Savocchia S., 2019. A review of Botryosphaeriaceae species associated with grapevine trunk diseases in Australia and New Zealand. Australasian Plant Pathology 48: 3-18. DOI: 10.1007/s13313-018-0585-5.
Brown A.A., Lawrence D.P., Baumgartner K., 2019. Role of basidiomycete fungi in the grapevine trunk disease esca. Plant Pathology 69: 205-220. DOI:10.1111/ppa.13116.
Bruez E., Lecomte P., Grosman J., Doublet B., Bertsch C., … Rey P., 2013. Overview of the grapevine trunk diseases in France in the early 2000s. Phytopathologia Mediterranea 52: 262-275. DOI: 10.14601/Phytopathol_Mediterr-11578.
Chen S., Morgan D.P., Hasey J.K., Anderson K., Michailides T.J., 2014. Phylogeny, morphology, distribution and pathogenicity of Botryosphaeriaceae and Diaporthaceae from English Walnut in California. Plant Disease 98: 636-652. DOI: 10.1094/PDIS-07-13-0706-RE.
Compant S., Brader G., Muzammil S., Sessitsch A., Lebrihi A., Mathieu F., 2013. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 58: 435-455. DOI: 10.1007/s10526-012-9479-6.
Daraignes L., Gerbore J., Yacoub A., Dubois L., Romand C., … Fermaud M., 2018. Efficacy of P. oligandrum affected by its association with bacterial BCAs and rootstock effect in controlling grapevine trunk diseases. Biological Control 119: 59–67. DOI: 10.1016/j.biocontrol.2018.01.008.
De la Fuente M., Fontaine F., Gramaje D., Armengol J., SmartR., … Corio-Costet M.F., 2016. Grapevine trunk diseases. A review. OIV publications, 1st Edition Paris, France. 24 pp.
Del Frari G., Cabral A., Nascimento T., Boavida Ferreira R., Oliveira H. 2019. Epicoccum layuense a potential biological control agent of esca-associated fungi in grapevine ed. Sabrina Sarrocco. Plos one 14: b.0213273. DOI: 10.1371/journal.pone.0213273.
Doublet B., Grosman J. 2018. Situation du vignoble, synthèse des résultats issus des dispositifs d’observation 2017 (partiellement 2018). In: Abstracts, journées maladies du bois de la vigne, October 29-31, 2018, Dijon, France.
Di Marco S., Osti F., Cesari, A., 2004. Experiments on the control of esca by Trichoderma. Phytopathologia Mediterranea 43: 108–115.
Dufour M.-C., Corio-Costet M.-F., 2013. Variability in the sensitivity of biotrophic grapevine pathogens (Erysiphe necator and Plasmopara viticola) to acibenzolar-S methyl and two phosphonates. European Journal of Plant Pathology 136: 247−259. DOI: 10.1111/j.1365-3059.2012.02628.x.
Dufour M.-C., Magnin N., Dumas B., Vergnes S., Corio-Costet M.-F., 2016. High-throughput gene-expression quantification of grapevine defense responses in the field using microfluidic dynamic arrays. BMC Genomics 17: 957. DOI: 10.1186/s12864-016-3304-z.
Eskalen A., Gubler W.D., 2001. Association of spores of Phaeomoniella chlamydospora, Phaeoacremonium inflatipes, and Pm. aleophilum with grapevine cordons in California. Phytopathologia Mediterranea 40: S429–S432. DOI: 10.14601/Phytopathol_Mediterr-1613.
Fourie P.H., Halleen F., Van der Vyver J., Schreuder W., 2001. Effect of Trichoderma treatments on the occurrence of decline pathogens in the roots and rootstocks of nursery grapevines. Phytopathologia Mediterranea 40: 473–478. DOI: 10.14601/Phytopathol_Mediterr-1619.
Gerbore J., Benhamou N., Vallance J., Le Floch G. Grizard D., … Rey P., 2014a. Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environmental Science and Pollution Research 21: 4847-4860. DOI: 10.1007/s11356-013-1807-6.
Gerbore J., Vallance J., Yacoub A., Delmotte F., Grizard D., … Rey P., 2014b. Characterization of Pythium oligandrum populations that colonise the rhizosphere of vines from the Bordeaux region. FEMS Microbiology Ecology 90: 153-167. DOI: 10.1111/1574-6941.12380.
Gimenez-Jaime A., Aroca A., Raposo R., Garcia-Jimenez J., Armengol J., 2006. Occurrence of fungal pathogens associated with grapevine nurseries and the decline of young vines in Spain. Journal of Phytopathology 154: 598-602. DOI: 10.1111/j.1439-0434.2006.01153.x.
Gramaje D., Úrbez-Torres J. R., Sosnowski, M., 2018. Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease 102: 12-39. DOI: 10.1094/PDIS-04-17-0512-FE.

Grosman J., Doublet B., 2012. Maladies du bois de la vigne. Synthèse des dispositifs d’observation au vignoble, de l’observatoire 2003–2008 au réseau d’épidémio- surveillance actuel. Phytoma 651: 31-35.
Gruau C., Trotel-Aziz P., Villaume S., Rabenoelina F., Clément C., … Aziz A., 2015. Pseudomonas fluorescens PTA-CT2 triggers local and systemic immune response against Botrytis cinerea in grapevine. Molecular Plant Microbe Interaction 28: 1117–1129. DOI:10.1094/MPMI-04-15-0092-R.
Gubler W.D., Baumgartner K., Browne G.T., Eskalen A., Rooney-Latham S., … Bayramian, L.A., 2004. Root diseases of grapevine in California and their control. Australasian Plant Pathology 33: 157-165. DOI: 10.1071/AP04019.
Haidar R., Deschamps A., Roudet J., Calvo-Garrido C., Bruez E., … Fermaud M., 2016a. Multi-organ screening of efficient bacterial control agents against two major pathogens of grapevine. Biological Control 92: 55-65. DOI: 10.1016/j.biocontrol.2015.09.003.
Haidar R., Roudet J., Bonnard O., Dufour M. C., Corio-Costet M. F., … Fermaud M. 2016b. Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiological Research 192: 172-184. DOI: 10.1016/j.micres.2016.07.003.
Harel Y. M., Mehari Z. H., Rav-David D., Elad Y., 2014. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104: 150−157. DOI: 10.1094/PHYTO-02-13-0043-R
Hase S., Shimizu A., Nakaho K., Takenaka S., Takahashi H., 2006. Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathology 55: 537-543. DOI: 10.1111/j.1365-3059.2006.01396.x.

Hase S., Takahashi S., Takenaka S., Nakaho K., Arie T., … Takahashi, H., 2008. Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathology 57: 870-876. DOI: 10.1111/j.1365-3059.2008.01858.x.
John S., Wicks T.J., Hunt J.S., Lorimer M.F., Oakey H., Scott, E.S., 2005. Protection of grapevine pruning wounds from infection by Eutypa lata using Trichoderma harzianum and Fusarium lateritium. Australasian Plant Pathology 34: 569–575. DOI: 10.1071/AP05075.
Kotze C., Van Niekerk J.M., Mostert L., Halleen F., Fourie, P.H., 2011. Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathologia Mediterranea 50: 247–263. DOI: 10.14601/Phytopathol_Mediterr-8960.
Larignon P., Dubos B., 1997. Fungi associated with esca disease. European Journal of Plant Pathology 103: 147–157.DOI: 10.1023/A:1008638409410
Larignon P., Fontaine F., Farine S., Clement C., Bertsch C., 2009. Esca and Black Dead Arm: two major actors of grapevine trunk diseases. Comptes Rendus Biologies 332: 765- 783.
Laveau C., Letouze A., Louvet G., Bastien S., Guerin-Dubrana L., 2009. Differential aggressiveness of fungi implicated in esca and associated diseases of grapevine in France. Phytopathologia Mediterranea 48: 32–46. DOI: 10.14601/Phytopathol_Mediterr-2873
Le Floch G., Rey P., Déniel F., Benhamou N., Picard K., Tirilly Y., 2003. Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum. Agronomie 23: 455–460. DOI: 10.1051/agro:2003018.
Le Floch G. L., Vallance J., Benhamou N., Rey, P., 2009. Combining the oomycete Pythium oligandrum with two other antagonistic fungi: Root relationships and tomato grey mold biocontrol. Biological Control 50: 288–298. DOI: 10.1016/j.biocontrol.2009.04.013.
Lecomte P., Darrieutort G., Liminana J.M., Comont G., Muruamendiaraz A., … Fermaud, M., 2012. New insights into Esca of grapevine: The development of foliar symptoms and their association with xylem discoloration. Plant Disease 96: 924-934. DOI:10.1094/PDIS-09-11-0776-RE.
Magnin-Robert M., Spagnolo A., Boulanger A., Joyeux C., Clément C., … Fontaine F., 2016. Changes in plant metabolism and accumulation of fungal metabolites in response to Esca proper and apoplexy expression in the whole grapevine. Phytopathology 16: 541–553. DOI: 10.1094/PHYTO-09-15-0207-R.
Maher N., Piot J., Bastien S., Vallance J., Rey P., Guerin-Dubrana L., 2012. Wood necrosis in esca-affected vines: types, relationships and possible links with foliar symptom expression. Journal International des Sciences de la Vigne et du Vin 46: 15-27. DOI:10.1094/PHYTO-09-15-0207-R.
Martos S., Andolfi A., Luque J., Mugnai L., Surico G., Evidente, A., 2008. Production of phytotoxic metabolites by five species of Botryosphaeriaceae causing decline on grapevines, with special interest in the species Neofusicoccum luteum and N. parvum. European Journal of Plant Pathology 121: 451-461. DOI: 10.1007/s10658-007-9263-0.
Massonnet M., Figueroa-Balderas R., Galarneau E. R. A., Miki S., Lawrence, D. P., Dario C., 2017. Neofusicoccum parvum Colonization of the Grapevine Woody Stem Triggers Asynchronous Host Responses at the Site of Infection and in the Leaves. Frontiers in Plant Science 8: 1117. DOI: 10.3389/fpls.2017.01117.
Mondello V., Songy A., Battiston E., Pinto C., Coppin C., … Fontaine F., 2018. Grapevine trunk diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Disease 102: 1189-1217. DOI: 10.1094/PDIS-08-17-1181-FE.

Mutawila C., Halleen F., Mostert, L., 2015. Development of benzimidazole resistant Trichoderma strains for the integration of chemical and biocontrol methods of grapevine pruning wound protection. BioControl 60: 387–399. DOI: 10.1007/s10526-014-9647-y.
Mutawila C., Fourie P. H., Halleen F., Mostert, L., 2016a. Grapevine cultivar variation to pruning wound protection by Trichoderma species against trunk pathogens. Phytopathologia Mediterranea 50: S264-S276. DOI: 10.14601/Phytopathol_Mediterr-8981.
Mutawila C., Halleen, F., Mostert, L. 2016b. Optimisation of time of application of Trichoderma biocontrol agents for protection of grapevine pruning wounds: Optimisation of Trichoderma biocontrol. Australian Journal of Grape and Wine Research 22: 279–287. DOI: 10.1111/ajgw.12218.
Mutawila C., Stander C., Halleen F., Vivier M. A., Mostert, L. 2017. Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes. Protoplasma 254: 863–879. DOI: 10.1007/s00709-016-0997-4.
Ouyang Z., Li X., Huang L., Hong Y., Zhang Y., … Song F., 2015. Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato. Molecular Plant Pathology 16: 238–250. DOI: 10.1111/mpp.12176.
Perazzolli M., Roatti B., Bozza E., Pertot I., 2011. Trichoderma harzianum T39 induces resistance against downy mildew by priming for defence without costs for grapevine. Biological control 58: 74–82. DOI: 10.1016/j.biocontrol.2011.04.006.
Pierron R.J., Pouzoulet J., Couderc C., Judic E., Compant S., Jacques A., 2016. Variations in early response of grapevine wood depending on wound and inoculation combinations with Phaeoacremonium aleophilum and Phaeomoniella chlamydospora. Frontiers in Plant Science 7: 268. DOI: 10.1094/PDIS-08-17-1181-FE.
Pinto C., Custódio V., Nunes M., Songy A., Rabenoelina F., Fontaine F., 2018. Understand the Potential Role of Aureobasidium pullulans, a Resident Microorganism From Grapevine, to Prevent the Infection Caused by Diplodia seriata. Frontiers in Microbiology 9. DOI: 10.3389/fmicb.2018.03047.
Pitt W.M., Huang R., Steel C.C., Savocchia S., 2013. Pathogenicity and epidemiology of Botryosphaeriaceae species isolated from grapevines in Australia. Australasian Plant Pathology 42: 573–582. DOI:10.1007/s13313-013-0221-3.
Rey P., Gl F., Benhamou N., Tirilly Y., 2008. Pythium oligandrum biocontrol: its relationships with fungi and plants. In: Plant–microbe interactions (E. Ait Barka, C. Clément, ed.), Research Signpost, Kerala, India, 43-67.
Rezgui A., Ben Ghnaya-Chakroun A., Vallance J., Bruez E., Hajlaoui M. R., Sadfi-Zouaoui, N., Rey P., 2016. Endophytic bacteria with antagonistic traits inhabit the wood tissues of grapevines from Tunisian vineyards. Biological Control 99: 28–37. DOI: 10.1016/j.biocontrol.2016.04.005.
Rumbos I., Rumbou A., 2001. Fungi associated with esca and young grapevine decline in Greece. Phytopathologia Mediterranea 40, S330-S335. DOI: 10.14601/Phytopathol_Mediterr-1622.
Slippers B., Wingfield M.J., 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews 21: 90-106. DOI: 10.1016/j.fbr.2007.06.002.

Sparapano L., Bruno G., Graniti A., 2001. Three-year observation of grapevines crossinoculated with esca-associated fungi. Phytopathologia Mediterranea 40: S376-S386. DOI: 10.14601/Phytopathol_Mediterr-1643.
Spagnolo A., Magnin-Robert M., Alayi T. D., Cilindre C., Mercier, L., … Fontaine F., 2011. Physiological changes in green stems of Vitis vinifera L. cv. Chardonnay in response to esca proper and apoplexy revealed by proteomic and transcriptomic analyses. Journal of Proteome Research 11: 461–475. DOI: 10.1021/pr200892g.
Spagnolo A., Magnin-Robert M., Alayi T. D., Cilindre C., Shaeffer-Reiss C., Fontaine F., 2014. Differential responses of three grapevine cultivars to Botryosphaeria dieback. Phytopathology 104: 1021–1035. DOI: 10.1094/PHYTO-01-14-0007-R.
Trotel-Aziz P., Abou-Mansour E., Courteaux B., Rabenoelina F., Clément, C., … Aziz A., 2019. Bacillus subtilis PTA-271 Counteracts Botryosphaeria Dieback in Grapevine, Triggering Immune Responses and Detoxification of Fungal Phytotoxins. Frontiers in Plant Science 10. DOI:10.3389/fpls.2019.00025.
Úrbez-Torres J.R., Gubler W.D., 2011. Susceptibility of grapevine pruning wounds to infection by Lasiodiplodia theobromae and Neofusicoccum parvum. Plant Pathology 60: 261-270. DOI:10.1111/j.1365-3059.2010.02381.x.
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., … Speleman, F., 2002. Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, 1–12. DOI: 10.1186/gb-2002-3-7-research0034.
Wang A., Lou B., Xu T., Lin C., 2011. Defense responses in tomato fruit induced by oligandrin against Botrytis cinerea. African Journal of Biotechnology 10: 4596–4601. DOI: 10.5897/AJB11.290. ISSN 1684–5315.

Yacoub A., Gerbore J., Magnin N., Chambon P., Dufour M.C., … Rey, P., 2016. Ability of Pythium oligandrum strains to protect Vitis vinifera L., by inducing plant resistance against Phaeomoniella chlamydospora, a pathogen involved in Esca, a grapevine trunk disease. Biological Control 9: 7–16. DOI: 10.5897/AJB11.290. ISSN 1684–5315.
Zhang W., Yan J., Li X., Xing Q., Chethana K. W. T., Zhao, W., 2019. Transcriptional response of grapevine to infection with the fungal pathogen Lasiodiplodia theobromae. Scientific Report 9: 5387. DOI:10.1038/s41598-019-41796-9.