Published 2025-12-30
Keywords
- ferroptosis,
- gut-brain axis,
- neuroinflammation
How to Cite
Copyright (c) 2025 Romina Mancinelli, Giorgio Vivacqua, Stefano Leone, Francesca Arciprete, Rosa Vaccaro, Ludovica Garro, Claudia Caturano, Marco Tagliafierro, Francesco Emanuele Bellomi, Filippo Maria Bassi, Viola Velardi, Emanuele Bocci, Ludovica Ceci, Sara Vitali, Andrea Bassi, Antonio Franchitto, Paolo Onori, Eugenio Gaudio, Arianna Casini

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Ferroptosis is a form of cellular death involved in the origin, progression, but also regulation of several human diseases. Its regulatory role in the gut-liver-brain axis (GLBA) has not been clarified. Therefore, we sought to summarize the possible correlations between ferroptosis and the GLBA. In this review, we first introduce the phenotype and the main mechanisms of this relatively newly described form of regulated cell death. Then, we analyse the anatomy of the GLBA, describing the connections between the gut and the liver, followed by the anatomical pathways from the gut to the brain and from the liver to the brain. After the morphological aspects, we summarize the main biological modulators of the GLBA, highlighting their physiological and pathological roles. In the end, we discuss in detail the regulatory role of ferroptosis on neuroinflammation and oxidative stress along GLBA, highlighting the key aspects that could be of significant clinical importance as future diagnostic and therapeutic targets.
References
- 1. Yang, W., Li, X., Li, X., Li, X. & Yu, S. Neuronal hemoglobin in mitochondria is reduced by forming a complex with α-synuclein in aging monkey brains. Oncotarget 7, 7441–7454 (2016).
- 2. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25, 486–541 (2018).
- 3. Stockwell, B. R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).
- 4. Yang, W. S. & Stockwell, B. R. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 26, 165–176 (2016).
- 5. Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R. & Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13, 1045–60 (2014).
- 6. Stockwell, B. R. et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 171, 273–285 (2017).
- 7. Stockwell, B. R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).
- 8. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci U S A 111, 16836–41 (2014).
- 9. Chng, C.-P., Sadovsky, Y., Hsia, K. J. & Huang, C. Site-Specific Peroxidation Modulates Lipid Bilayer Mechanics. Extreme Mech Lett 42, (2021).
- 10. Hao, L., Zhong, Y.-M., Tan, C.-P. & Mao, Z.-W. Quantitative tracking of endoplasmic reticulum viscosity during ferroptosis by an iridium complex via TPPLM. Chem Commun (Camb) 57, 5040–5042 (2021).
- 11. Nie, Q., Hu, Y., Yu, X., Li, X. & Fang, X. Induction and application of ferroptosis in cancer therapy. Cancer Cell Int 22, 12 (2022).
- 12. Chen, X., Yu, C., Kang, R. & Tang, D. Iron Metabolism in Ferroptosis. Front Cell Dev Biol 8, 590226 (2020).
- 13. Koppula, P., Zhuang, L. & Gan, B. Cytochrome P450 reductase (POR) as a ferroptosis fuel. Protein Cell 12, 675–679 (2021).
- 14. Cobler, L., Zhang, H., Suri, P., Park, C. & Timmerman, L. A. xCT inhibition sensitizes tumors to γ-radiation via glutathione reduction. Oncotarget 9, 32280–32297 (2018).
- 15. Feng, H. & Stockwell, B. R. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol 16, e2006203 (2018).
- 16. Ganz, T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102, 783–8 (2003).
- 17. Vogt, A.-C. S. et al. On Iron Metabolism and Its Regulation. Int J Mol Sci 22, (2021).
- 18. Epsztejn, S. et al. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood 94, 3593–603 (1999).
- 19. Nie, Q., Hu, Y., Yu, X., Li, X. & Fang, X. Induction and application of ferroptosis in cancer therapy. Cancer Cell Int 22, 12 (2022).
- 20. Quiles Del Rey, M. & Mancias, J. D. NCOA4-Mediated Ferritinophagy: A Potential Link to Neurodegeneration. Front Neurosci 13, 238 (2019).
- 21. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15, 234–45 (2008).
- 22. Kwon, M.-Y., Park, E., Lee, S.-J. & Chung, S. W. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6, 24393–403 (2015).
- 23. Koppula, P., Zhuang, L. & Gan, B. Cytochrome P450 reductase (POR) as a ferroptosis fuel. Protein Cell 12, 675–679 (2021).
- 24. Lin, L.-S. et al. Simultaneous Fenton-like Ion Delivery and Glutathione Depletion by MnO2 -Based Nanoagent to Enhance Chemodynamic Therapy. Angew Chem Int Ed Engl 57, 4902–4906 (2018).
- 25. Reis, A. & Spickett, C. M. Chemistry of phospholipid oxidation. Biochim Biophys Acta 1818, 2374–87 (2012).
- 26. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13, 81–90 (2017).
- 27. Gijón, M. A., Riekhof, W. R., Zarini, S., Murphy, R. C. & Voelker, D. R. Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils. J Biol Chem 283, 30235–45 (2008).
- 28. Pabst, O. et al. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 20, 447–461 (2023).
- 29. Tilg, H., Adolph, T. E. & Trauner, M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab 34, 1700–1718 (2022).
- 30. Milosevic, I. et al. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases: A Review of the Literature. Int J Mol Sci 20, (2019).
- 31. He, J. et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci 21, (2020).
- 32. Coppola, S., Avagliano, C., Calignano, A. & Berni Canani, R. The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules 26, (2021).
- 33. Kawasoe, J. et al. Propionic Acid, Induced in Gut by an Inulin Diet, Suppresses Inflammation and Ameliorates Liver Ischemia and Reperfusion Injury in Mice. Front Immunol 13, 862503 (2022).
- 34. Wright, R. S., Anderson, J. W. & Bridges, S. R. Propionate inhibits hepatocyte lipid synthesis. Proc Soc Exp Biol Med 195, 26–9 (1990).
- 35. McNabney, S. M. & Henagan, T. M. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients 9, (2017).
- 36. Singh, V. et al. Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell 175, 679-694.e22 (2018).
- 37. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101, 15718–23 (2004).
- 38. van Eenige, R. et al. Angiopoietin-like 4 governs diurnal lipoprotein lipase activity in brown adipose tissue. Mol Metab 60, 101497 (2022).
- 39. Chen, J. & Vitetta, L. Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. Int J Mol Sci 21, (2020).
- 40. Israelsen M, Francque S, Tsochatzis EA, Krag A. Steatotic liver disease. Lancet 404(10464), 1761-1778 (2024).
- 41. Pabst, O. et al. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 20, 447–461 (2023).
- 42. Kuo, W.-T. et al. The Tight Junction Protein ZO-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology 161, 1924–1939 (2021).
- 43. Günzel, D. & Fromm, M. Claudins and other tight junction proteins. Compr Physiol 2, 1819–52 (2012).
- 44. Tsukita, S., Tanaka, H. & Tamura, A. The Claudins: From Tight Junctions to Biological Systems. Trends Biochem Sci 44, 141–152 (2019).
- 45. Yiu, J. H. C., Dorweiler, B. & Woo, C. W. Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J Mol Med (Berl) 95, 13–20 (2017).
- 46. Ciesielska, A., Matyjek, M. & Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 78, 1233–1261 (2021).
- 47. Yu, X. et al. Ferroptosis: An important mechanism of disease mediated by the gut-liver-brain axis. Life Sci 347, 122650 (2024).
- 48. Albillos, A., de Gottardi, A. & Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol 72, 558–577 (2020).
- 49. Espinosa-Oliva, A. M. et al. Inflammatory bowel disease induces pathological α-synuclein aggregation in the human gut and brain. Neuropathol Appl Neurobiol 50, e12962 (2024).
- 50. Casini, A. et al. TNBS colitis induces architectural changes and alpha-synuclein overexpression in mouse distal colon: A morphological study. Cell Tissue Res 399, 247–265 (2025).
- 51. Simbrunner, B., Trauner, M. & Reiberger, T. Review article: therapeutic aspects of bile acid signalling in the gut-liver axis. Aliment Pharmacol Ther 54, 1243–1262 (2021).
- 52. Schoeler, M. & Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord 20, 461–472 (2019).
- 53. Yan, M. et al. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 8, 443 (2023).
- 54. Guo, C., Chen, W.-D. & Wang, Y.-D. TGR5, Not Only a Metabolic Regulator. Front Physiol 7, 646 (2016).
- 55. Xie, G. et al. Conjugated secondary 12α-hydroxylated bile acids promote liver fibrogenesis. EBioMedicine 66, 103290 (2021).
- 56. Wang, Y. et al. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology 65, 2005–2018 (2017).
- 57. Kakiyama, G. et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 58, 949–55 (2013).
- 58. Arias, N. et al. The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients 12, (2020).
- 59. Gadaleta, R. M. & Moschetta, A. Metabolic Messengers: fibroblast growth factor 15/19. Nat Metab 1, 588–594 (2019).
- 60. Somm, E. & Jornayvaz, F. R. Fibroblast Growth Factor 15/19: From Basic Functions to Therapeutic Perspectives. Endocr Rev 39, 960–989 (2018).
- 61. Potthoff, M. J. et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab 13, 729–38 (2011).
- 62. Andersen, A., Lund, A., Knop, F. K. & Vilsbøll, T. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol 14, 390–403 (2018).
- 63. Munshi, M. K. et al. Regulation of biliary proliferation by neuroendocrine factors: implications for the pathogenesis of cholestatic liver diseases. Am J Pathol 178, 472–84 (2011).
- 64. Sun, L. et al. Secretin modulates appetite via brown adipose tissue-brain axis. Eur J Nucl Med Mol Imaging 50, 1597–1606 (2023).
- 65. Barrea, L. et al. The challenge of weight loss maintenance in obesity: a review of the evidence on the best strategies available. Int J Food Sci Nutr 73, 1030–1046 (2022).
- 66. Bove, C. & Travagli, R. A. Neurophysiology of the brain stem in Parkinson’s disease. J Neurophysiol 121, 1856–1864 (2019).
- 67. Fleming, M. A., Ehsan, L., Moore, S. R. & Levin, D. E. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol Res Pract 2020, 8024171 (2020).
- 68. Furness, J. B. & Stebbing, M. J. The first brain: Species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterology and motility 30, (2018).
- 69. Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol. 13(9),517–28 (2016).
- 70. Santucci, N. R. & Velez, A. Physiology of lower gastrointestinal tract. Aliment Pharmacol Ther 60 Suppl 1, S1–S19 (2024).
- 71. Wallrapp, A. & Chiu, I. M. Neuroimmune Interactions in the Intestine. Annu Rev Immunol 42, 489–519 (2024).
- 72. Spencer, N. J. & Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 17, 338–351 (2020).
- 73. Wehrwein, E. A., Orer, H. S. & Barman, S. M. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol 6, 1239–78 (2016).
- 74. Santucci, N. R. & Velez, A. Physiology of lower gastrointestinal tract. Aliment Pharmacol Ther 60 Suppl 1, S1–S19 (2024).
- 75. Chakrabarti, A. et al. The microbiota-gut-brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell Mol Life Sci 79, 80 (2022).
- 76. Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 361, (2018).
- 77. Berthoud, H. R., Blackshaw, L. A., Brookes, S. J. H. & Grundy, D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterology and motility 16 Suppl 1, 28–33 (2004).
- 78. Bonaz, B., Sinniger, V. & Pellissier, S. Vagus Nerve Stimulation at the Interface of Brain-Gut Interactions. Cold Spring Harb Perspect Med 9, (2019).
- 79. Rinaman, L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350, 18–34 (2010).
- 80. Doifode, T. et al. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol Res 164, 105314 (2021).
- 81. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13, 701–12 (2012).
- 82. Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6, 306–14 (2009).
- 83. Kumar, A. et al. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals (Basel) 16, (2023).
- 84. Su, Y.-L. et al. Phlorizin alleviates cholinergic memory impairment and regulates gut microbiota in d-galactose induced mice. Exp Gerontol 165, 111863 (2022).
- 85. Wenzel, T. J., Gates, E. J., Ranger, A. L. & Klegeris, A. Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol Cell Neurosci 105, 103493 (2020).
- 86. Li, D. et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell 17, e12768 (2018).
- 87. Clarke, G. et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18, 666–73 (2013).
- 88. Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558, 263–75 (2004).
- 89. Grenham, S., Clarke, G., Cryan, J. F. & Dinan, T. G. Brain-gut-microbe communication in health and disease. Front Physiol 2, 94 (2011).
- 90. Eisenstein, M. Microbiome: Bacterial broadband. Nature 533, S104-6 (2016).
- 91. Dinan, T. G. et al. Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology 130, 304–11 (2006).
- 92. Hosoi, T., Okuma, Y. & Nomura, Y. Electrical stimulation of afferent vagus nerve induces IL-1β expression in the brain and activates HPA axis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 279, R141–R147 (2000).
- 93. Demaude, J. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 55, 655–661 (2006).
- 94. Gribble, F. M. & Reimann, F. Enteroendocrine Cells: Chemosensors in the Intestinal Epithelium. Annu Rev Physiol 78, 277–99 (2016).
- 95. De Silva, A. & Bloom, S. R. Gut Hormones and Appetite Control: A Focus on PYY and GLP-1 as Therapeutic Targets in Obesity. Gut Liver 6, 10–20 (2012).
- 96. Latorre, R., Sternini, C., De Giorgio, R. & Greenwood-Van Meerveld, B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterology and motility 28, 620–30 (2016).
- 97. Steinert, R. E. et al. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 97, 411–463 (2017).
- 98. Kaelberer, M. M. et al. A gut-brain neural circuit for nutrient sensory transduction. Science 361, (2018).
- 99. Bohórquez, D. V et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 125, 782–6 (2015).
- 100. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–71 (2012).
- 101. Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes 39, 424–429 (2015).
- 102. Lin, H. V. et al. Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS One 7, e35240 (2012).
- 103. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10, 473–86 (2013).
- 104. Golubeva, A. V et al. Microbiota-related Changes in Bile Acid & Tryptophan Metabolism are Associated with Gastrointestinal Dysfunction in a Mouse Model of Autism. EBioMedicine 24, 166–178 (2017).
- 105. Mawe, G. M., Coates, M. D. & Moses, P. L. Review article: intestinal serotonin signalling in irritable bowel syndrome. Aliment Pharmacol Ther 23, 1067–76 (2006).
- 106. Shajib, M. S., Baranov, A. & Khan, W. I. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation. ACS Chem Neurosci 8, 920–931 (2017).
- 107. Liu K, Yang L, Wang G, Liu J, Zhao X, Wang Y, Li J, Yang. Metabolic stress drives sympathetic neuropathy within the liver. J. Cell Metab. 33(3), 666-675 (2021).
- 108. Miller, B. M., Oderberg, I. M. & Goessling, W. Hepatic Nervous System in Development, Regeneration, and Disease. Hepatology 74, 3513–3522 (2021).
- 109. Matsubara, Y., Kiyohara, H., Teratani, T., Mikami, Y. & Kanai, T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 205, 108915 (2022).
- 110. Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85, 1–17 (2000).
- 111. Magni, F. & Carobi, C. The afferent and preganglionic parasympathetic innervation of the rat liver, demonstrated by the retrograde transport of horseradish peroxidase. J Auton Nerv Syst 8, 237–60 (1983).
- 112. Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat Rev Gastroenterol Hepatol 15, 625–636 (2018).
- 113. Berthoud, H.-R. & Neuhuber, W. L. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci 1454, 42–55 (2019).
- 114. Berthoud, H. R., Carlson, N. R. & Powley, T. L. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol 260, R200-7 (1991).
- 115. Fukuda, Y., Imoto, M., Koyama, Y., Miyazawa, Y. & Hayakawa, T. Demonstration of Noradrenaline-Immunoreactive Nerve Fibres in the Liver. Journal of International Medical Research 24, 466–472 (1996).
- 116. Imai, J. & Katagiri, H. Regulation of systemic metabolism by the autonomic nervous system consisting of afferent and efferent innervation. Int Immunol 34, 67–79 (2022).
- 117. Metz, M. et al. Leptin increases hepatic triglyceride export via a vagal mechanism in humans. Cell Metab 34, 1719-1731.e5 (2022).
- 118. Stoyanova, I. I. & Gulubova, M. V. Peptidergic nerve fibres in the human liver. Acta Histochem 100, 245–56 (1998).
- 119. Akiyoshi, H., Gonda, T. & Terada, T. A comparative histochemical and immunohistochemical study of aminergic, cholinergic and peptidergic innervation in rat, hamster, guinea pig, dog and human livers. Liver 18, 352–9 (1998).
- 120. Patterson, T. T., Nicholson, S., Wallace, D., Hawryluk, G. W. J. & Grandhi, R. Complex Feed-Forward and Feedback Mechanisms Underlie the Relationship Between Traumatic Brain Injury and the Gut-Microbiota-Brain Axis. Shock 52, 318–325 (2019).
- 121. Coulter, A. A., Rebello, C. J. & Greenway, F. L. Centrally Acting Agents for Obesity: Past, Present, and Future. Drugs 78, 1113–1132 (2018).
- 122. Sawchenko, P. E. Central connections of the sensory and motor nuclei of the vagus nerve. J Auton Nerv Syst 9, 13–26 (1983).
- 123. Cheon, S. Y. & Song, J. The Association between Hepatic Encephalopathy and Diabetic Encephalopathy: The Brain-Liver Axis. Int J Mol Sci 22, (2021).
- 124. Kerfoot, S. M. et al. TNF-alpha-secreting monocytes are recruited into the brain of cholestatic mice. Hepatology 43, 154–62 (2006).
- 125. D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 29, 2089–102 (2009).
- 126. Cheon, S. Y. & Song, J. The Association between Hepatic Encephalopathy and Diabetic Encephalopathy: The Brain-Liver Axis. Int J Mol Sci 22, (2021).
- 127. Nguyen, K., D’Mello, C., Le, T., Urbanski, S. & Swain, M. G. Regulatory T cells suppress sickness behaviour development without altering liver injury in cholestatic mice. J Hepatol 56, 626–31 (2012).
- 128. Sleiman, S. F. et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife 5, (2016).
- 129. Ieraci, A., Mallei, A., Musazzi, L. & Popoli, M. Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice. Hippocampus 25, 1380–92 (2015).
- 130. Sleiman, S. F. et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife 5, (2016).
- 131. Ray, W. J. & Buggia-Prevot, V. Novel Targets for Alzheimer’s Disease: A View Beyond Amyloid. Annu Rev Med 72, 15–28 (2021).
- 132. Cheng, Y. et al. Physiological β-amyloid clearance by the liver and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol 145, 717–731 (2023).
- 133. Mao, Z., Zhang, Y., Liang, Y., Xia, C. & Tang, L. Liver X receptor α contribution to neuroinflammation and glial cells activation induced by MPTP: Implications for Parkinson’s disease. Neuroscience 560, 109–119 (2024).
- 134. Reyes, J. F. et al. Accumulation of alpha-synuclein within the liver, potential role in the clearance of brain pathology associated with Parkinson’s disease. Acta Neuropathol Commun 9, 46 (2021).
- 135. Hallbeck, M., Ekmark-Lewén, S., Kahle, P. J., Ingelsson, M. & Reyes, J. F. Accumulation of alpha-synuclein pathology in the liver exhibits post-translational modifications associated with Parkinson’s disease. iScience 27, 111448 (2024).
- 136. Góralczyk-Bińkowska, A., Szmajda-Krygier, D. & Kozłowska, E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci 23, (2022).
- 137. Socała, K. et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 172, 105840 (2021).
- 138. Ancona, A. et al. The gut-brain axis in irritable bowel syndrome and inflammatory bowel disease. Dig Liver Dis 53, 298–305 (2021).
- 139. Hummel, S. et al. Associations of breastfeeding with childhood autoimmunity, allergies, and overweight: The Environmental Determinants of Diabetes in the Young (TEDDY) study. Am J Clin Nutr 114, 134–142 (2021).
- 140. Ilie, O.-D., Ciobica, A., McKenna, J., Doroftei, B. & Mavroudis, I. Minireview on the Relations between Gut Microflora and Parkinson’s Disease: Further Biochemical (Oxidative Stress), Inflammatory, and Neurological Particularities. Oxid Med Cell Longev 2020, 4518023 (2020).
- 141. Christovich, A. & Luo, X. M. Gut Microbiota, Leaky Gut, and Autoimmune Diseases. Front Immunol 13, 946248 (2022).
- 142. Moser, G., Fournier, C. & Peter, J. Intestinal microbiome-gut-brain axis and irritable bowel syndrome. Wien Med Wochenschr 168, 62–66 (2018).
- 143. Green, A. R. Neuropharmacology of 5-hydroxytryptamine. Br J Pharmacol 147 Suppl 1, S145-52 (2006).
- 144. Lin, S.-H., Lee, L.-T. & Yang, Y. K. Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci 12, 196–202 (2014).
- 145. Khlevner, J., Park, Y. & Margolis, K. G. Brain-Gut Axis: Clinical Implications. Gastroenterol Clin North Am 47, 727–739 (2018).
- 146. Gershon, M. D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20, 14–21 (2013).
- 147. Gross, E. R. et al. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 143, 408–17.e2 (2012).
- 148. Crowell, M. D. Role of serotonin in the pathophysiology of the irritable bowel syndrome. Br J Pharmacol 141, 1285–93 (2004).
- 149. Lesurtel, M., Soll, C., Humar, B. & Clavien, P.-A. Serotonin: a double-edged sword for the liver? Surgeon 10, 107–13 (2012).
- 150. Marazziti, D. Understanding the role of serotonin in psychiatric diseases. F1000Res 6, 180 (2017).
- 151. Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29, 1395–403 (2015).
- 152. Sampson, T. R. et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell 167, 1469-1480.e12 (2016).
- 153. Xie, A. et al. Bacterial Butyrate in Parkinson’s Disease Is Linked to Epigenetic Changes and Depressive Symptoms. Mov Disord 37, 1644–1653 (2022).
- 154. Desbonnet, L. et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170, 1179–88 (2010).
- 155. Sittipo, P., Choi, J., Lee, S. & Lee, Y. K. The function of gut microbiota in immune-related neurological disorders: a review. J Neuroinflammation 19, 154 (2022).
- 156. Carloni, S. et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 374, 439–448 (2021).
- 157. Carloni, S. & Rescigno, M. The gut-brain vascular axis in neuroinflammation. Semin Immunol 69, 101802 (2023).
- 158. Sjöstedt, P., Enander, J. & Isung, J. Serotonin Reuptake Inhibitors and the Gut Microbiome: Significance of the Gut Microbiome in Relation to Mechanism of Action, Treatment Response, Side Effects, and Tachyphylaxis. Front Psychiatry 12, 682868 (2021).
- 159. Faure, C., Patey, N., Gauthier, C., Brooks, E. M. & Mawe, G. M. Serotonin Signaling Is Altered in Irritable Bowel Syndrome With Diarrhea but Not in Functional Dyspepsia in Pediatric Age Patients. Gastroenterology 139, 249–258 (2010).
- 160. Sikander, A., Rana, S. V. & Prasad, K. K. Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin Chim Acta 403, 47–55 (2009).
- 161. Li, H.-Y. et al. Theabrownin inhibits obesity and non-alcoholic fatty liver disease in mice via serotonin-related signaling pathways and gut-liver axis. J Adv Res 52, 59–72 (2023).
- 162. Ko, M. et al. Correction: Modulation of serotonin in the gut-liver neural axis ameliorates the fatty and fibrotic changes in non-alcoholic fatty liver. Dis Model Mech 16, (2023).
- 163. Ford, A. C. et al. American College of Gastroenterology monograph on the management of irritable bowel syndrome and chronic idiopathic constipation. Am J Gastroenterol 109 Suppl 1, S2-26; quiz S27 (2014).
- 164. Murnane, K. S. Serotonin 2A receptors are a stress response system: implications for post-traumatic stress disorder. Behavioural pharmacology 30, 151–162 (2019).
- 165. Lee, S.-H., Han, C. & Shin, C. IUPHAR review: Microbiota-gut-brain axis and its role in neuropsychiatric disorders. Pharmacol Res 216, 107749 (2025).
- 166. Nauck, M. A. & Meier, J. J. Incretin hormones: Their role in health and disease. Diabetes Obes Metab 20 Suppl 1, 5–21 (2018).
- 167. Zhang T, Perkins MH, Chang H, Han W, de Araujo IE. An inter-organ neural circuit for appetite suppression. Cell 185(14), 2478-2494 (2022).
- 168. Ikezawa Y, Yamatani K, Ohnuma H, Daimon M, Manaka H , Sasaki H. Glucagon-like peptide-1 inhibits glucagon-induced glycogenolysis in perivenous hepatocytes specifically. Regul Pept. 111(1-3), 207-10 (2003).
- 169. Ionut, V. et al. Hepatic portal vein denervation impairs oral glucose tolerance but not exenatide’s effect on glycemia. Am J Physiol Endocrinol Metab 307, E644-52 (2014).
- 170. Taminato, T., Seino, Y., Goto, Y., Inoue, Y. & Kadowaki, S. Synthetic gastric inhibitory polypeptide. Stimulatory effect on insulin and glucagon secretion in the rat. Diabetes 26, 480–4 (1977).
- 171. Ebert, R., Nauck, M. & Creutzfeldt, W. Effect of exogenous or endogenous gastric inhibitory polypeptide (GIP) on plasma triglyceride responses in rats. Horm Metab Res 23, 517–21 (1991).
- 172. Adriaenssens, A. E. et al. Glucose-Dependent Insulinotropic Polypeptide Receptor-Expressing Cells in the Hypothalamus Regulate Food Intake. Cell Metab 30, 987-996.e6 (2019).
- 173. Vilsbøll, T., Krarup, T., Deacon, C. F., Madsbad, S. & Holst, J. J. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50, 609–13 (2001).
- 174. Burton-Freeman, B., Davis, P. A. & Schneeman, B. O. Interaction of fat availability and sex on postprandial satiety and cholecystokinin after mixed-food meals. Am J Clin Nutr 80, 1207–14 (2004).
- 175. Sayegh, A. I. The role of cholecystokinin receptors in the short-term control of food intake. Prog Mol Biol Transl Sci 114, 277–316 (2013).
- 176. Sayegh, A. I., Washington, M. C., Raboin, S. J., Aglan, A. H. & Reeve, J. R. CCK-58 prolongs the intermeal interval, whereas CCK-8 reduces this interval: not all forms of cholecystokinin have equal bioactivity. Peptides (N.Y.) 55, 120–5 (2014).
- 177. Rasmussen, B. A. et al. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats. Gastroenterology 142, 834-843.e3 (2012).
- 178. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–72 (2007).
- 179. Matzinger, D. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut 46, 689–694 (2000).
- 180. Duca, F. A. & Lam, T. K. T. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes Metab 16 Suppl 1, 68–76 (2014).
- 181. Beglinger, S. et al. Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab 95, 879–86 (2010).
- 182. Degen, L. et al. Effect of CCK-1 receptor blockade on ghrelin and PYY secretion in men. Am J Physiol Regul Integr Comp Physiol 292, R1391-9 (2007).
- 183. Lu, W. J. et al. Chylomicron formation and secretion is required for lipid-stimulated release of incretins GLP-1 and GIP. Lipids 47, 571–80 (2012).
- 184. Randich, A. et al. Responses of celiac and cervical vagal afferents to infusions of lipids in the jejunum or ileum of the rat. Am J Physiol Regul Integr Comp Physiol 278, R34-43 (2000).
- 185. Wachsmuth, H. R., Weninger, S. N. & Duca, F. A. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med 54, 377–392 (2022).
- 186. Kwan, J. Y. et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 7, e35241 (2012).
- 187. Angelova, P. R. et al. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ 27, 2781–2796 (2020).
- 188. Ryan, S. K. et al. Therapeutic inhibition of ferroptosis in neurodegenerative disease. Trends Pharmacol Sci 44, 674–688 (2023).
- 189. Agmon, E., Solon, J., Bassereau, P. & Stockwell, B. R. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep 8, 5155 (2018).
- 190. Angelova, P. R. et al. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ 27, 2781–2796 (2020).
- 191. Lei, P., Bai, T. & Sun, Y. Mechanisms of Ferroptosis and Relations With Regulated Cell Death: A Review. Front Physiol 10, 139 (2019).
- 192. Ryan, S. K. et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci 26, 12–26 (2023).
- 193. Li, J. et al. Ferroptosis: past, present and future. Cell Death Dis 11, 88 (2020).
- 194. Galvagnion, C. et al. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein. Proc Natl Acad Sci U S A 113, 7065–70 (2016).
- 195. Angelova, P. R. et al. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ 27, 2781–2796 (2020).
- 196. Ji, J., Wu, L., Wei, J., Wu, J. & Guo, C. The Gut Microbiome and Ferroptosis in MAFLD. J Clin Transl Hepatol 11, 174–187 (2023).
- 197. Ye, Q. et al. Atractylodin alleviates nonalcoholic fatty liver disease by regulating Nrf2-mediated ferroptosis. Heliyon 9, e18321 (2023).
- 198. Song, X. et al. Glucopyranose from Pleurotus geesteranus prevent alcoholic liver diseases by regulating Nrf2/HO-1-TLR4/NF-κB signalling pathways and gut microbiota. Food Funct 13, 2441–2455 (2022).
- 199. Matsubara, Y., Kiyohara, H., Teratani, T., Mikami, Y. & Kanai, T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 205, 108915 (2022).
- 200. Ren, B. et al. Protective effects of sesamol on systemic oxidative stress-induced cognitive impairments via regulation of Nrf2/Keap1 pathway. Food Funct 9, 5912–5924 (2018).
- 201. Wei, X. et al. Astragalus polysaccharide ameliorated complex factor-induced chronic fatigue syndrome by modulating the gut microbiota and metabolites in mice. Biomed Pharmacother 163, 114862 (2023).
- 202. Zhang, H. et al. Gut Microbiota Mediates the Susceptibility of Mice to Sepsis-Associated Encephalopathy by Butyric Acid. J Inflamm Res 15, 2103–2119 (2022).
- 203. Singh, R. et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 10, 89 (2019).
- 204. Singh, R. et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 10, 89 (2019).
- 205. Cai, Y. et al. Vitamin D suppresses ferroptosis and protects against neonatal hypoxic-ischemic encephalopathy by activating the Nrf2/HO-1 pathway. Transl Pediatr 11, 1633–1644 (2022).
- 206. Margolis, K. G., Cryan, J. F. & Mayer, E. A. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 160, 1486–1501 (2021).
- 207. Benarroch, E. What Is the Role of Ferroptosis in Neurodegeneration? Neurology 101, 312–319 (2023).
- 208. Nuñez, M. T. & Chana-Cuevas, P. New Perspectives in Iron Chelation Therapy for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 11, (2018).
- 209. Kahn-Kirby, A. H. et al. Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS One 14, e0214250 (2019).
- 210. Pekkurnaz, G. & Wang, X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 4, 802–812 (2022).
- 211. Yu, X. et al. Ferroptosis involved in sevoflurane-aggravated young rats brain injury induced by liver transplantation. Neuroreport 33, 705–713 (2022).
- 212. Liu, P. et al. Ferroptosis contributes to isoflurane-induced neurotoxicity and learning and memory impairment. Cell Death Discov 7, 72 (2021).
- 213. Tian, Y. et al. 17β-oestradiol inhibits ferroptosis in the hippocampus by upregulating DHODH and further improves memory decline after ovariectomy. Redox Biol 62, 102708 (2023).
- 214. Kouhestani, S., Jafari, A. & Babaei, P. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen Res 13, 1827–1832 (2018).
- 215. Chen, J. et al. Cognitive protection of sinomenine in type 2 diabetes mellitus through regulating the EGF/Nrf2/HO-1 signaling, the microbiota-gut-brain axis, and hippocampal neuron ferroptosis. Phytother Res 37, 3323–3341 (2023).
- 216. Ding, C. et al. EGF released from human placental mesenchymal stem cells improves premature ovarian insufficiency via NRF2/HO-1 activation. Aging 12, 2992–3009 (2020).
- 217. Xie, Z. et al. Activated AMPK mitigates diabetes-related cognitive dysfunction by inhibiting hippocampal ferroptosis. Biochem Pharmacol 207, 115374 (2023).
- 218. Wang, J. et al. Irisin protects against sepsis-associated encephalopathy by suppressing ferroptosis via activation of the Nrf2/GPX4 signal axis. Free Radic Biol Med 187, 171–184 (2022).
- 219. Fang, J. et al. Overexpression of GPX4 attenuates cognitive dysfunction through inhibiting hippocampus ferroptosis and neuroinflammation after traumatic brain injury. Free Radic Biol Med 204, 68–81 (2023).
- 220. Zhang, Y., Zhang, X., Wee Yong, V. & Xue, M. Vildagliptin improves neurological function by inhibiting apoptosis and ferroptosis following intracerebral hemorrhage in mice. Neurosci Lett 776, 136579 (2022).
- 221. Xie, B.-S. et al. Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther 25, 465–475 (2019).
- 222. Liu, Y., Zhu, C., Guo, J., Chen, Y. & Meng, C. The Neuroprotective Effect of Irisin in Ischemic Stroke. Front Aging Neurosci 12, 588958 (2020).
- 223. Young, M. F., Valaris, S. & Wrann, C. D. A role for FNDC5/Irisin in the beneficial effects of exercise on the brain and in neurodegenerative diseases. Prog Cardiovasc Dis 62, 172–178 (2019).
- 224. Guo, P., Jin, Z., Wang, J., Sang, A. & Wu, H. Irisin Rescues Blood-Brain Barrier Permeability following Traumatic Brain Injury and Contributes to the Neuroprotection of Exercise in Traumatic Brain Injury. Oxid Med Cell Longev 2021, 1118981 (2021).
- 225. Chu, J. et al. Acetaminophen impairs ferroptosis in the hippocampus of septic mice by regulating glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways. Brain Behav 13, e3145 (2023).
- 226. Hambright, W. S., Fonseca, R. S., Chen, L., Na, R. & Ran, Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 12, 8–17 (2017).
- 227. Wang, B. et al. Ferroptosis-related biomarkers for Alzheimer’s disease: Identification by bioinformatic analysis in hippocampus. Front Cell Neurosci 16, 1023947 (2022).
- 228. Yuan, H., Pratte, J. & Giardina, C. Ferroptosis and its potential as a therapeutic target. Biochem Pharmacol 186, 114486 (2021).
- 229. Wang, J.-Y. et al. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep 6, 36669 (2016).
- 230. Hayflick, S. J., Kurian, M. A. & Hogarth, P. Neurodegeneration with brain iron accumulation. Handb Clin Neurol 147, 293–305 (2018).
- 231. Liu, A. et al. Decreased subregional specificity of the putamen in Parkinson’s Disease revealed by dynamic connectivity-derived parcellation. Neuroimage Clin 20, 1163–1175 (2018).
- 232. Wang, J.-Y. et al. Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep 6, 36669 (2016).
- 233. Chen, J. et al. Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS One 8, e77023 (2013).
- 234. Rosas, H. D. et al. Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol 69, 887–93 (2012).
- 235. Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136, 4551–6 (2014).
- 236. Liu, M., Zhao, J., Xue, C., Yang, J. & Ying, L. Uncovering the ferroptosis related mechanism of laduviglusib in the cell-type-specific targets of the striatum in Huntington’s disease. BMC Genomics 25, 633 (2024).
- 237. Barrett, E. et al. Reduced GLP-1R availability in the caudate nucleus with Alzheimer’s disease. Front Aging Neurosci 16, 1350239 (2024).
- 238. Deng, B. et al. MicroRNAs in Methamphetamine-Induced Neurotoxicity and Addiction. Front Pharmacol 13, 875666 (2022).
- 239. Hu, S. et al. Iron chelation prevents nigrostriatal neurodegeneration in a chronic methamphetamine mice model. Neurotoxicology 99, 24–33 (2023).
- 240. Schain, M. & Kreisl, W. C. Neuroinflammation in Neurodegenerative Disorders-a Review. Curr Neurol Neurosci Rep 17, 25 (2017).
- 241. Millán Solano, M. V. et al. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 24, (2023).
- 242. Guo, X., Wei, R., Yin, X. & Yang, G. Crosstalk between neuroinflammation and ferroptosis: Implications for Parkinson’s disease progression. Front Pharmacol 16, 1528538 (2025).
- 243. Hu, X. et al. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J Neuroinflammation 19, 242 (2022).
- 244. Cui, Y. et al. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression. J Neuroinflammation 18, 249 (2021).
- 245. Ward, R. J., Dexter, D. T. & Crichton, R. R. Iron, Neuroinflammation and Neurodegeneration. Int J Mol Sci 23, (2022).
- 246. Ong, W.-Y. & Farooqui, A. A. Iron, neuroinflammation, and Alzheimer’s disease. J Alzheimers Dis 8, 183–200; discussion 209-15 (2005).
- 247. Zeng, T. et al. Nrf2 regulates iron-dependent hippocampal synapses and functional connectivity damage in depression. J Neuroinflammation 20, 212 (2023).
- 248. Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R. & Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13, 1045–60 (2014).
- 249. Pretorius, L., Kell, D. B. & Pretorius, E. Iron Dysregulation and Dormant Microbes as Causative Agents for Impaired Blood Rheology and Pathological Clotting in Alzheimer’s Type Dementia. Front Neurosci 12, 851 (2018).
- 250. Tizabi, Y., Bennani, S., El Kouhen, N., Getachew, B. & Aschner, M. Heavy Metal Interactions with Neuroglia and Gut Microbiota: Implications for Huntington’s Disease. Cells 13, (2024).
- 251. Kania, B., Sotelo, A., Ty, D. & Wisco, J. J. The Prevention of Inflammation and the Maintenance of Iron and Hepcidin Homeostasis in the Gut, Liver, and Brain Pathologies. J Alzheimers Dis 92, 769–789 (2023).
- 252. Butterworth, R. F. Metal toxicity, liver disease and neurodegeneration. Neurotox Res 18, 100–5 (2010).