Vol. 64 No. 2 (2025)
Articles

First report of Biscogniauxia mediterranea causing cankers on almond trees (Prunus dulcis)

Ana FAUSTINO
Alentejo Biotechnology Center for Agriculture and Agro-Food (CEBAL)/ Polytechnic University of Beja (IPBeja), 7801-908 Beja, Portugal
Cláudia MARINHO
Alentejo Biotechnology Center for Agriculture and Agro-Food (CEBAL)/ Polytechnic University of Beja (IPBeja), 7801-908 Beja, Portugal
M. Margarida OLIVEIRA
Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Plant Functional Genomics Laboratory, 2780-157 Oeiras, Portugal
Maria do ROSÁRIO FÉLIX
MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
Liliana MARUM
Alentejo Biotechnology Center for Agriculture and Agro-Food (CEBAL)/ Polytechnic University of Beja (IPBeja), 7801-908 Beja, Portugal

Published 2025-09-12

Keywords

  • Biscogniauxia mediterranea,
  • Prunus dulcis,
  • charcoal disease,
  • pathogenicity,
  • Koch's postulates

How to Cite

[1]
A. FAUSTINO, C. MARINHO, M. M. OLIVEIRA, do ROSÁRIO FÉLIX M., and L. MARUM, “First report of Biscogniauxia mediterranea causing cankers on almond trees (Prunus dulcis)”, Phytopathol. Mediterr., vol. 64, no. 2, pp. 191–197, Sep. 2025.

Abstract

Biscogniauxia mediterranea is the causal agent of charcoal disease in Quercus suber, the main species of the dynamic ecosystem, known as “Montado”, in the Alentejo region, Portugal. In the last years, almond orchards have been introduced in this region due to water availability through the Alqueva dam and the possibility of mechanical harvest. The high-density planting associated with mechanized harvesting and irrigation systems observed in these new orchards can potentiate the appearance of new diseases. In a survey conducted in March 2022, symptomatic diseased trees from Soleta and Vairo cultivars were detected in Beja, Portugal. From this material, we have isolated numerous cultures and could identify B. mediterranea from all individuals analyzed by molecular and morphological techniques. Pathogenicity tests were performed in almond plant material and successfully reisolated from lesions, confirming Koch’s postulates. Phylogenetics analyses demonstrated the similarity between our sequences and sequences from Quercus suber worldwide. To our knowledge, this is the first report of B. mediterranea causing diseases on almond trees (Prunus dulcis) in Portugal and worldwide.

Downloads

Download data is not yet available.

References

  1. Carbone I., Kohn L. M., 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3): 553–556. https://doi.org/10.1080/00275514.1999.12061051. DOI: https://doi.org/10.1080/00275514.1999.12061051
  2. Faustino A., Pires R.C., Caeiro S., Rosa A., Marreiros A., … Marum L., 2022. Micrografting in almond (Prunus dulcis) Portuguese varieties for production of disease-free plants in International Symposium on In Vitro Technology and Micropropagated Plants. Acta Horticulturae 1359: 165–172. https://doi.org/10.17660/ActaHortic.2023.1359.20. DOI: https://doi.org/10.17660/ActaHortic.2023.1359.20
  3. Gharbi R., Ennouri K., Bouazizi E., Cheffi M., Triki M.A., 2020. First report of charcoal disease caused by Biscogniauxia mediterranea on Olea europaea in Tunisia. Journal of Plant Pathology 102: 961. https://doi.org/10.1007/s42161-020-00531-4. DOI: https://doi.org/10.1007/s42161-020-00531-4
  4. Hall T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Ser. 41: 95–98. https://doi.org/10.1021/bk-1999-0734.ch008. DOI: https://doi.org/10.1021/bk-1999-0734.ch008
  5. Henriques J., Nóbrega F., Sousa E., Lima A., 2014. Diversity of Biscogniauxia mediterranea within Single Stromata on Cork Oak. Journal of Mycology 324349. https://doi.org/10.1155/2014/324349. DOI: https://doi.org/10.1155/2014/324349
  6. Henriques J., Nóbrega F., Sousa E., Lima A., 2016. Analysis of the genetic diversity and phylogenetic relationships of Biscogniauxia mediterranea isolates associated with cork oak. Phytoparasitica 44: 19–34. https://doi.org/10.1007/s12600-015-0503-0. DOI: https://doi.org/10.1007/s12600-015-0503-0
  7. Letunic I., Bork P., 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research 52(W1): W78–W82. http://doi.org/10.1093/nar/gkae268. DOI: https://doi.org/10.1093/nar/gkae268
  8. Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300. DOI: https://doi.org/10.1093/molbev/msu300
  9. Paiva D., 2011. Detecção de Fusarium circinatum Nirenberg & O’Donnell em coníferas da região central de Portugal. Master Thesis, University of Coimbra, Coimbra, Portugal, 64 pp.
  10. Raimondo M. L., Lops F., Carlucci A., 2016. Charcoal Canker of Pear, Plum, and Quince Trees Caused by Biscogniauxia rosacearum sp. nov. in Southern Italy. Plant Disease 100(9): 1813–1822. https://doi.org/10.1094/PDIS-09-15-1037-RE. DOI: https://doi.org/10.1094/PDIS-09-15-1037-RE
  11. Rostamian M., Kavosi M.R., Bazgir E., Babanezhad M., 2016. First report of Biscogniauxia mediterranea causing canker on wild almond (Amygdalus scoparia). Australasian Plant Disease Notes 11: 30. https://doi.org/10.1007/s13314-016-0219-0. DOI: https://doi.org/10.1007/s13314-016-0219-0
  12. Sohrabi M., Mohammadi H., Armengol J., León M., 2022. New report of Biscogniauxia rosacearum as a pathogen on almond trees in Iran. Journal of Plant Diseases and Protection 129: 411–417. https://doi.org/10.1007/s41348-022-00582-y. DOI: https://doi.org/10.1007/s41348-022-00582-y
  13. Tomishima H., Luo K., Mitchell A. E., 2022. The almond (Prunus dulcis): Chemical properties, utilization, and valorization of coproducts. Annual Review of Food Science and Technology 13(1): 145–166. https://doi.org/10.1146/annurev-food-052720-111942. DOI: https://doi.org/10.1146/annurev-food-052720-111942
  14. Vaidya G., Lohman D.J., Meier R., 2011. SequenceMatrix: concatenation software for the last assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x. DOI: https://doi.org/10.1111/j.1096-0031.2010.00329.x
  15. Vannini A., Mazzaglia A., Anselmi N., 1999. Use of random amplified polymorphic DNA (RAPD) for detection of genetic variation and proof of the heterothallic mating system in Hypoxylon mediterraneum. European Journal of Plant Pathology 29(3): 209–218. https://doi.org/10.1046/j.1439-0329.1999.00145.x. DOI: https://doi.org/10.1046/j.1439-0329.1999.00145.x
  16. Varanda C.M.R., Oliveira M., Materatski P., Landum M., Clara M.I.E., Félix M.R., 2016. Fungal endophytic communities associated to the phyllosphere of gravepine cultivars under different types of management. Fungal Biology 120(12): 1525–1536. https://doi.org/10.1016/j.funbio.2016.08.002. DOI: https://doi.org/10.1016/j.funbio.2016.08.002
  17. White T.J., Bruns T., Lee S., Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols, a Guide to Methods and Applications (MA Innis, DH Gelfand, JJ Sninsky, J White, ed.), Academic Press, San Diego, CA, USA, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  18. Yangui I., Boutiti Z. M., Messaoud C., Ben Jamaâ M. L., Vannini A., Vettraino A. M., 2019. First report of Biscogniauxia mediterranea causing canker on Erica multiflora L. in Tunisia. Journal of Plant Pathology 101: 1273. https://doi.org/10.1007/s42161-019-00339-x. DOI: https://doi.org/10.1007/s42161-019-00339-x