Antifungal efficacy of four plant-derived essential oils against Botrytis cinerea: chemical profiles and biological activities
Published 2025-05-14
Keywords
- Vitis vinifera,
- plant extracts,
- chemical composition,
- sustainable agriculture
How to Cite
Copyright (c) 2025 Faical AOUJIL, Loubna DRA, Chaimae EL GHDAICH, Sarah TOUFIQ, Hiba YAHYAOUI, Majida HAFIDI, Aziz AZIZ, Khaoula HABBADI

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Chemical compositions and the antifungal efficacy of essential oils derived from Origanum elongatum, Mentha pulegium, Thymus vulgaris, or Corymbia citriodora were assessed against the grapevine gray mold pathogen Botrytis cinerea, isolated from Moroccan vineyards. Gas chromatography-mass spectrometry (GC-MS) analyses identified the major constituents of these oils as carvacrol (61.8%) from O. elongatum, pulegone (91.2%) from M. pulegium, thymol (47.8%) from T. vulgaris, and cineol (78.11%) from C. citriodora. All these essential oils had antifungal activity, inhibiting in vitro colony radial growth and conidium germination of B. cinerea. Among the essential oils, that from O. elongatum exhibited the greatest inhibition of mycelium growth, with minimum inhibitory concentrations (MICs) and effective concentrations (EC50), respectively, of 252.5 µL L-1 and 33.27 µL L-1 in direct contact, and 56.17 µL L-1 and 12.75 µL L-1 in fumigation. At 125 µL L-1, origanum essential oil completely inhibited B. cinerea conidium germination. In vivo tests with detached leaves of two grapevine cultivars and grape berries showed that essential oils from M. pulegium and O. elongatum reduced the lesion diameters by, respectively, 78% and 72% on the leaves, and by 58% and 50% on grape berries. The results indicate the potential of using these essential oils as natural and effective alternatives to chemical fungicides for control of B. cinerea, offering a promising strategy for sustainable and environmentally friendly disease management practices.
Downloads
Metrics
References
- Abbaszadeh S., Sharifzadeh A., Shokri H., Khosravi A.R., Abbaszadeh A., 2014. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. Journal de Mycologie Médicale 24: e51–e56. https://doi.org/10.1016/j.mycmed.2014.01.063 DOI: https://doi.org/10.1016/j.mycmed.2014.01.063
- Abdelli M., Moghrani H., Aboun A., Maachi R., 2016. Algerian Mentha pulegium L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. Industrial Crops and Products 94: 197–205. https://doi.org/10.1016/j.indcrop.2016.08.042 DOI: https://doi.org/10.1016/j.indcrop.2016.08.042
- Abdolahi A., Hassani A., Ghuosta Y., Bernousi I., Meshkatalsadat M.H., 2010. In vitro efficacy of four plant essential oils against Botrytis cinerea Pers.:Fr. and Mucor piriformis A. Fischer. Journal of Essential Oil Bearing Plants 13: 97–107. https://doi.org/10.1080/0972060X.2010.10643796 DOI: https://doi.org/10.1080/0972060X.2010.10643796
- Adams R.P., 2007. Identification of essential oil components by gas chromatography mass spectroscopy. Carol stream, Ill, Allured publishing corporation, 804 pp.
- Adaskaveg J.E., Förster H., Prusky D.B. (eds), 2022. Postharvest pathology of fruit and nut crops. The American Phytopathological Society. DOI: https://doi.org/10.1094/9780890546680
- Agrios G.N., 2008. Plant Pathology. Amsterdam, Elsevier Academic Press, 922 pp.
- Aguiar R.W.D.S., Ootani M.A., Ascencio S.D., Ferreira T.P.S., Santos M.M.D., Santos G.R.D., 2014. Fumigant Antifungal Activity of Corymbia citriodora and Cymbopogon nardus Essential Oils and Citronellal against Three Fungal Species. The Scientific World Journal 2014: 1–8. https://doi.org/10.1155/2014/492138 DOI: https://doi.org/10.1155/2014/492138
- Ait-Ouazzou A., Lorán S., Arakrak A., Laglaoui A., Rota C., … Conchello P., 2012. Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Research International 45: 313–319. https://doi.org/10.1016/j.foodres.2011.09.004 DOI: https://doi.org/10.1016/j.foodres.2011.09.004
- Aligiannis N., Kalpoutzakis E., Mitaku S., Chinou I.B., 2001. Composition and antimicrobial activity of the essential oils of two Origanum species. Journal of Agricultural and Food Chemistry 49: 4168–4170. https://doi.org/10.1021/jf001494m DOI: https://doi.org/10.1021/jf001494m
- Almasaudi N.M., Al-Qurashi A.D., Elsayed M.I., Abo-Elyousr K.A.M., 2022. Essential oils of oregano and cinnamon as an alternative method for control of gray mold disease of table grapes caused by Botrytis cinerea. Journal of Plant Pathology 104: 317–328. https://doi.org/10.1007/s42161-021-01008-8 DOI: https://doi.org/10.1007/s42161-021-01008-8
- Álvarez-García S., Moumni M., Romanazzi G., 2023. Antifungal activity of volatile organic compounds from essential oils against the postharvest pathogens Botrytis cinerea, Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Frontiers in Plant Science 14: 1274770. https://doi.org/10.3389/fpls.2023.1274770 DOI: https://doi.org/10.3389/fpls.2023.1274770
- Antonov A., Stewart A., Walter M., 1997. Inhibition of conidium germination and mycelial growth of Botrytis cinerea by natural products. Proceedings of the New Zealand Plant Protection Conference 50: 159–164. https://doi.org/10.30843/nzpp.1997.50.11289 DOI: https://doi.org/10.30843/nzpp.1997.50.11289
- Aouadi G., Grami L.K., Taibi F., Bouhlal R., Elkahoui S., … Mediouni Ben Jemâa J., 2022. Assessment of the efficiency of Mentha pulegium essential oil to suppress contamination of stored fruits by Botrytis cinerea. Journal of Plant Diseases and Protection 129: 881–893. https://doi.org/10.1007/s41348-022-00623-6 DOI: https://doi.org/10.1007/s41348-022-00623-6
- Aoujil F., Litskas V., Yahyaoui H., El Allaoui N., Benbouazza A., … Habbadi K., 2024. Sustainability indicators for the environmental impact assessment of plant protection products use in Moroccan vineyards. Horticulturae 10: 473. https://doi.org/10.3390/horticulturae10050473 DOI: https://doi.org/10.3390/horticulturae10050473
- Areco V.A., Achimón F., Almirón C., Nally M.C., Zunino M.P., Yaryura P., 2024. Antifungal activity of essential oils rich in ketones against Botrytis cinerea: New strategy for biocontrol. Biocatalysis and Agricultural Biotechnology 59: 103233. https://doi.org/10.1016/j.bcab.2024.103233 DOI: https://doi.org/10.1016/j.bcab.2024.103233
- Balasubramaniam A., 1997. Neuropeptide Y Family of Hormones: Receptor subtypes and antagonists. Peptides 18: 445–457. https://doi.org/10.1016/S0196-9781(96)00347-6 DOI: https://doi.org/10.1016/S0196-9781(96)00347-6
- Bi K., Liang Y., Mengiste T., Sharon A., 2023. Killing softly: a roadmap of Botrytis cinerea pathogenicity. Trends in Plant Science 28: 211–222. https://doi.org/10.1016/j.tplants.2022.08.024 DOI: https://doi.org/10.1016/j.tplants.2022.08.024
- Boddy L., 2016. Pathogens of Autotrophs. In: The Fungi, Elsevier, 245–292. DOI: https://doi.org/10.1016/B978-0-12-382034-1.00008-6
- Brahmi F., Abdenour A., Bruno M., Silvia P., Alessandra P., … Mohamed C., 2016. Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria. Industrial Crops and Products 88: 96–105. https://doi.org/10.1016/j.indcrop.2016.03.002 DOI: https://doi.org/10.1016/j.indcrop.2016.03.002
- Burggraf A., Rienth M., 2020. Origanum vulgare essential oil vapor impedes Botrytis cinerea development on grapevine (Vitis vinifera) fruit. Phytopathologia Mediterranea 59: 331–344. https://doi.org/10.14601/Phyto-11605
- Burt S., 2004. Essential oils: their antibacterial properties and potential applications in foods – a review. International Journal of Food Microbiology 94: 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
- Carrubba A., Catalano C., 2009. Essential oil crops for sustainable agriculture – A Review. In: Climate Change, Intercropping, Pest Control and Beneficial Microorganisms (E. Lichtfouse, ed.), Dordrecht, Springer Netherlands, 137–187. DOI: https://doi.org/10.1007/978-90-481-2716-0_8
- Chang Y., Harmon P.F., Treadwell D.D., Carrillo D., Sarkhosh A., Brecht J.K., 2022. Biocontrol Potential of essential oils in organic Horticulture systems: From Farm to Fork. Frontiers in Nutrition 8: 805138. https://doi.org/10.3389/fnut.2021.805138 DOI: https://doi.org/10.3389/fnut.2021.805138
- Chen Y., Dai G., 2012. Antifungal activity of plant extracts against Colletotrichum lagenarium, the causal agent of anthracnose in cucumber. Journal of the Science of Food and Agriculture 92: 1937–1943. https://doi.org/10.1002/jsfa.5565 DOI: https://doi.org/10.1002/jsfa.5565
- Cheng C., He X., Li H., Zhang Y., Sun S., … Li Y., 2024. Study on the antibacterial activity of Litsea essential oil nanoemulsion and its effect on the storage quality of duck meat. Journal of Molecular Liquids 410: 125610. https://doi.org/10.1016/j.molliq.2024.125610 DOI: https://doi.org/10.1016/j.molliq.2024.125610
- Daferera D.J., Ziogas B.N., Polissiou M.G., 2003. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection 22: 39–44. https://doi.org/10.1016/S0261-2194(02)00095-9 DOI: https://doi.org/10.1016/S0261-2194(02)00095-9
- De Sousa Barros A., De Morais S.M., Ferreira P.A.T., Vieira Í.G.P., Craveiro A.A., … De Sousa H.A., 2015. Chemical composition and functional properties of essential oils from Mentha species. Industrial Crops and Products 76: 557–564. https://doi.org/10.1016/j.indcrop.2015.07.004 DOI: https://doi.org/10.1016/j.indcrop.2015.07.004
- Della Pepa T., Elshafie H.S., Capasso R., De Feo V., Camele I., … Caputo L., 2019. Antimicrobial and phytotoxic activity of Origanum heracleoticum and O. majorana Essential oils growing in Cilento (Southern Italy). Molecules 24: 2576. https://doi.org/10.3390/molecules24142576 DOI: https://doi.org/10.3390/molecules24142576
- Di Francesco A., Aprea E., Gasperi F., Parenti A., Placì N., … Baraldi E., 2022. Apple pathogens: Organic essential oils as an alternative solution. Scientia Horticulturae 300: 111075. https://doi.org/10.1016/j.scienta.2022.111075 DOI: https://doi.org/10.1016/j.scienta.2022.111075
- Dorman H.J.D., Figueiredo A.C., Barroso J.G., Deans S.G., 2000. In vitro evaluation of antioxidant activity of essential oils and their components. Flavour and Fragrance Journal 15: 12–16. https://doi.org/10.1002/(SICI)1099-1026(200001/02)15:1<12::AID-FFJ858>3.0.CO;2-V DOI: https://doi.org/10.1002/(SICI)1099-1026(200001/02)15:1<12::AID-FFJ858>3.0.CO;2-V
- Drioiche A., Zahra Radi F., Ailli A., Bouzoubaa A., Boutakiout A., … Zair T., 2022. Correlation between the chemical composition and the antimicrobial properties of seven samples of essential oils of endemic Thymes in Morocco against multi-resistant bacteria and pathogenic fungi. Saudi Pharmaceutical Journal 30: 1200–1214. https://doi.org/10.1016/j.jsps.2022.06.022 DOI: https://doi.org/10.1016/j.jsps.2022.06.022
- Elansary H.O., Abdelgaleil S.A.M., Mahmoud E.A., Yessoufou K., Elhindi K., El-Hendawy S., 2018. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complementary and Alternative Medicine 18: 214. https://doi.org/10.1186/s12906-018-2262-1 DOI: https://doi.org/10.1186/s12906-018-2262-1
- El-Ghorab A.H., 2006. The Chemical Composition of the Mentha pulegium L. Essential oil from Egypt and its antioxidant activity. Journal of Essential Oil Bearing Plants 9: 183–195. https://doi.org/10.1080/0972060X.2006.10643491 DOI: https://doi.org/10.1080/0972060X.2006.10643491
- El-Mohamedy R.S.R., 2017. Plant essential oils for controlling plant pathogenic Fungi. In: Volatiles and Food Security (D.K. Choudhary, A.K. Sharma, P. Agarwal, A. Varma and N. Tuteja, ed.), Singapore, Springer Singapore, 171–198. DOI: https://doi.org/10.1007/978-981-10-5553-9_9
- Elshafie H.S., Mancini E., Camele I., Martino L.D., De Feo V., 2015. In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Industrial Crops and Products 66: 11–15. https://doi.org/10.1016/j.indcrop.2014.12.031 DOI: https://doi.org/10.1016/j.indcrop.2014.12.031
- Fathi Z., Hassani A., Ghosta Y., Abdollahi A., Meshkatalsadat M.H., 2012. The potential of Thyme, Clove, Cinnamon and Ajowan essential oils in inhibiting the growth of Botrytis cinerea and Monilinia fructicola. Journal of Essential Oil Bearing Plants 15: 38–47. https://doi.org/10.1080/0972060X.2012.10644017 DOI: https://doi.org/10.1080/0972060X.2012.10644017
- Fincheira P., Jofré I., Espinoza J., Levío-Raimán M., Tortella G., … Rubilar O., 2023. The efficient activity of plant essential oils for inhibiting Botrytis cinerea and Penicillium expansum: Mechanistic insights into antifungal activity. Microbiological Research 277: 127486. https://doi.org/10.1016/j.micres.2023.127486 DOI: https://doi.org/10.1016/j.micres.2023.127486
- Fontana D.C., Neto D.D., Pretto M.M., Mariotto A.B., Caron B.O., … Schmidt D., 2021. Using essential oils to control diseases in strawberries and peaches. International Journal of Food Microbiology 338: 108980. https://doi.org/10.1016/j.ijfoodmicro.2020.108980 DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108980
- Habbadi K., Meyer T., Vial L., Gaillard V., Benkirane R., … Lavire C., 2018. Essential oils of Origanum compactum and Thymus vulgaris exert a protective effect against the phytopathogen Allorhizobium vitis. Environmental Science and Pollution Research 25: 29943–29952. https://doi.org/10.1007/s11356-017-1008-9 DOI: https://doi.org/10.1007/s11356-017-1008-9
- Hong J.K., Sook Jo Y., Jeong D.H., Woo S.M., Park J.Y., … Park C.-J., 2023. Vapors from plant essential oils to manage tomato grey mold caused by Botrytis cinerea. Fungal Biology 127: 985–996. https://doi.org/10.1016/j.funbio.2023.02.002 DOI: https://doi.org/10.1016/j.funbio.2023.02.002
- Hou H., Zhang X., Zhao T., Zhou L., 2020. Effects of Origanum vulgare essential oil and its two main components, carvacrol and thymol, on the plant pathogen Botrytis cinerea. PeerJ 8: e9626. https://doi.org/10.7717/peerj.9626 DOI: https://doi.org/10.7717/peerj.9626
- Hua L., Yong C., Zhanquan Z., Boqiang L., Guozheng Q., Shiping T., 2018. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Quality and Safety 2: 111–119. https://doi.org/10.1093/fqsafe/fyy016 DOI: https://doi.org/10.1093/fqsafe/fyy016
- Jeandet P., Sbaghi M., Bessis R., 1992. The production of resveratrol (3,5,4’‐trihydroxystilbene) by grapevine in vitro cultures, and its application to screening for grey mold resistance. Journal of Wine Research 3: 47–57. https://doi.org/10.1080/09571269208717914 DOI: https://doi.org/10.1080/09571269208717914
- Kokkini S., Hanlidou E., Karousou R., Lanaras T., 2002. Variation of pulegone content in Pennyroyal (Mentha pulegium L.) Plants growing wild in Greece. Journal of Essential Oil Research 14: 224–227. https://doi.org/10.1080/10412905.2002.9699830 DOI: https://doi.org/10.1080/10412905.2002.9699830
- Li Y., Shao X., Xu J., Wei Y., Xu F., Wang H., 2017. Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chemistry 234: 62–67. https://doi.org/10.1016/j.foodchem.2017.04.172 DOI: https://doi.org/10.1016/j.foodchem.2017.04.172
- López‐Meneses A.K., Sánchez‐Mariñez R.I., Quintana‐Obregón E.A., Parra‐Vergara N.V., González‐Aguilar G.A., … Cortez‐Rocha M.O., 2017. In vitro Antifungal activity of essential oils and major components against fungi plant pathogens. Journal of Phytopathology 165: 232–237. https://doi.org/10.1111/jph.12554 DOI: https://doi.org/10.1111/jph.12554
- Lorenzo D., Paz D., Dellacassa E., Davies P., Vila R., Cañigueral S., 2002. Essential oils of Mentha pulegium and Mentha rotundifolia from Uruguay. Brazilian Archives of Biology and Technology 45: 519–524. https://doi.org/10.1590/S1516-89132002000600016 DOI: https://doi.org/10.1590/S1516-89132002000600016
- Low D., Rawal B., Griffin W., 1974. Antibacterial action of the essential oils of some australian myrtaceae with special references to the activity of chromatographic fractions of oil of eucalyptus citriodora. Planta Medica 26: 184–189. https://doi.org/10.1055/s-0028-1097987 DOI: https://doi.org/10.1055/s-0028-1097987
- Maurya A., Prasad J., Das S., Dwivedy A.K., 2021. Essential oils and their application in food safety. Frontiers in Sustainable Food Systems 5: 653420. https://doi.org/10.3389/fsufs.2021.653420 DOI: https://doi.org/10.3389/fsufs.2021.653420
- Mechergui K., Jaouadi W., Coelho J.P., Khouja M.L., 2016. Effect of harvest year on production, chemical composition and antioxidant activities of essential oil of oregano (Origanum vulgare subsp glandulosum (Desf.) Ietswaart) growing in North Africa. Industrial Crops and Products 90: 32–37. https://doi.org/10.1016/j.indcrop.2016.06.011 DOI: https://doi.org/10.1016/j.indcrop.2016.06.011
- Moghaddam M., Mehdizadeh L., 2016. Essential oil and antifungal therapy. In: Recent Trends in Antifungal Agents and Antifungal Therapy (A. Basak, R. Chakraborty and S.M. Mandal, eds.), New Delhi, Springer India, 29–74. DOI: https://doi.org/10.1007/978-81-322-2782-3_2
- Nazzaro F., Fratianni F., Coppola R., Feo V.D., 2017. Essential oils and antifungal activity. Pharmaceuticals 10: 86. https://doi.org/10.3390/ph10040086 DOI: https://doi.org/10.3390/ph10040086
- Notte A.-M., Plaza V., Marambio-Alvarado B., Olivares-Urbina L., Poblete-Morales M., … Castillo L., 2021. Molecular identification and characterization of Botrytis cinerea associated to the endemic flora of semi-desert climate in Chile. Current Research in Microbial Sciences 2: 100049. https://doi.org/10.1016/j.crmicr.2021.100049 DOI: https://doi.org/10.1016/j.crmicr.2021.100049
- Nunes M.R., Agostinetto L., Da Rosa C.G., Sganzerla W.G., Pires M.F., … Zinger F.D., 2024. Application of nanoparticles entrapped orange essential oil to inhibit the incidence of phytopathogenic fungi during storage of agroecological maize seeds. Food Research International 175: 113738. https://doi.org/10.1016/j.foodres.2023.113738 DOI: https://doi.org/10.1016/j.foodres.2023.113738
- Orozco-Mosqueda Ma.D.C., Kumar A., Fadiji A.E., Babalola O.O., Puopolo G., Santoyo G., 2023. Agroecological management of the grey mold fungus Botrytis cinerea by Plant Growth-Promoting Bacteria. Plants 12: 637. https://doi.org/10.3390/plants12030637 DOI: https://doi.org/10.3390/plants12030637
- Oumzil H., Ghoulami S., Rhajaoui M., Ilidrissi A., Fkih‐Tetouani S., … Benjouad A., 2002. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytotherapy Research 16: 727–731. https://doi.org/10.1002/ptr.1045 DOI: https://doi.org/10.1002/ptr.1045
- Parikh L., Agindotan B.O., Burrows M.E., 2021. Antifungal activity of plant-derived essential oils on pathogens of pulse crops. Plant Disease 105: 1692–1701. https://doi.org/10.1094/PDIS-06-20-1401-RE DOI: https://doi.org/10.1094/PDIS-06-20-1401-RE
- Pinto L., Bonifacio M.A., De Giglio E., Cometa S., Logrieco A.F., Baruzzi F., 2020. Unravelling the antifungal effect of red Thyme oil (Thymus vulgaris L.) Compounds in vapor phase. Molecules 25: 4761. https://doi.org/10.3390/molecules25204761 DOI: https://doi.org/10.3390/molecules25204761
- Ramezani H., Singh H.P., Batish D.R., Kohli R.K., 2002. Antifungal activity of the volatile oil of Eucalyptus citriodora. Fitoterapia 73: 261–262. https://doi.org/10.1016/S0367-326X(02)00065-5 DOI: https://doi.org/10.1016/S0367-326X(02)00065-5
- Ritz C., Baty F., Streibig J.C., Gerhard D., 2015. Dose-response analysis using R. PLOS ONE (Y. Xia, ed.) 10: e0146021. https://doi.org/10.1371/journal.pone.0146021 DOI: https://doi.org/10.1371/journal.pone.0146021
- Šernaitė L., Rasiukevičiūtė N., Valiuškaitė A., 2020. The extracts of Cinnamon and Clove as potential biofungicides against strawberry Grey Mold. Plants 9: 613. https://doi.org/10.3390/plants9050613 DOI: https://doi.org/10.3390/plants9050613
- Shao W., Zhao Y., Ma Z., 2021. Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology® 111: 455–463. https://doi.org/10.1094/PHYTO-07-20-0313-IA DOI: https://doi.org/10.1094/PHYTO-07-20-0313-IA
- Singh K., Deepa N., Chauhan S., Tandon S., Verma R.S., Singh A., 2024. Antifungal action of 1,8 cineole, a major component of Eucalyptus globulus essential oil against Alternaria tenuissima via overproduction of reactive oxygen species and downregulation of virulence and ergosterol biosynthetic genes. Industrial Crops and Products 214: 118580. https://doi.org/10.1016/j.indcrop.2024.118580 DOI: https://doi.org/10.1016/j.indcrop.2024.118580
- Singh P., Pandey A.K., 2018. Prospective of essential oils of the Genus Mentha as biopesticides: A Review. Frontiers in Plant Science 9: 1295. https://doi.org/10.3389/fpls.2018.01295 DOI: https://doi.org/10.3389/fpls.2018.01295
- Sivropoulou A., Papanikolaou E., Nikolaou C., Kokkini S., Lanaras T., Arsenakis M., 1996. Antimicrobial and cytotoxic activities of Origanum Essential Oils. Journal of Agricultural and Food Chemistry 44: 1202–1205. https://doi.org/10.1021/jf950540t DOI: https://doi.org/10.1021/jf950540t
- Soylu E.M., Kurt Ş., Soylu S., 2010. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mold disease agent Botrytis cinerea. International Journal of Food Microbiology 143: 183–189. https://doi.org/10.1016/j.ijfoodmicro.2010.08.015 DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.08.015
- Stoyanova A., Georgiev E., Kula J., Majda T., 2005. Chemical composition of the essential oil of Mentha pulegium L. from Bulgaria. Journal of Essential Oil Research 17: 475–476. https://doi.org/10.1080/10412905.2005.9698968 DOI: https://doi.org/10.1080/10412905.2005.9698968
- Tang X., Shao Y.-L., Tang Y.-J., Zhou W.-W., 2018. Antifungal activity of essential oil compounds (Geraniol and Citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules 23: 2108. https://doi.org/10.3390/molecules23092108 DOI: https://doi.org/10.3390/molecules23092108
- Tripathi P., Dubey N.K., Shukla A.K., 2008. Use of some essential oils as post-harvest botanical fungicides in the management of grey mold of grapes caused by Botrytis cinerea. World Journal of Microbiology and Biotechnology 24: 39–46. https://doi.org/10.1007/s11274-007-9435-2 DOI: https://doi.org/10.1007/s11274-007-9435-2
- Walter M., Jaspers M.V., Eade K., Frampton C.M., Stewart A., 2001. Control of Botrytis cinerea in grape using thyme oil. Australasian Plant Pathology 30: 21–25. https://doi.org/10.1071/AP0059 DOI: https://doi.org/10.1071/AP00059
- Wike N.Y., Olaniyan O.T., Adetunji C.O., Adetunji J.B., Akinbo O., … Yerima M.B., 2024. Stability of essential oil during different types of food processing and storage and their role in postharvest management of fruits and vegetables. In: Applications of Essential Oils in the Food Industry, Elsevier, 281–284. DOI: https://doi.org/10.1016/B978-0-323-98340-2.00027-4
- Williamson B., Tudzynski B., Tudzynski P., Van Kan J.A.L., 2007. Botrytis cinerea: the cause of grey mold disease. Molecular Plant Pathology 8: 561–580. https://doi.org/10.1111/j.1364-3703.2007.00417.x DOI: https://doi.org/10.1111/j.1364-3703.2007.00417.x
- Xu W.-T., Huang K.-L., Guo F., Qu W., Yang J.-J., … Luo Y.-B., 2007. Postharvest grapefruit seed extract and chitosan treatments of table grapes to control Botrytis cinerea. Postharvest Biology and Technology 46: 86–94. https://doi.org/10.1016/j.postharvbio.2007.03.019 DOI: https://doi.org/10.1016/j.postharvbio.2007.03.019
- Xueuan R., Dandan S., Zhuo L., Qingjun K., 2018. Effect of mint oil against Botrytis cinerea on table grapes and its possible mechanism of action. European Journal of Plant Pathology 151: 321–328. https://doi.org/10.1007/s10658-017-1375-6 DOI: https://doi.org/10.1007/s10658-017-1375-6
- Yang F., Mi J., Huang F., Pienpinijtham P., Guo Y., … Xie Y., 2022. Trans-cinnamaldehyde inhibits Penicillium italicum by damaging mitochondria and inducing apoptosis mechanisms. Food Science and Human Wellness 11: 975–981. https://doi.org/10.1016/j.fshw.2022.03.022 DOI: https://doi.org/10.1016/j.fshw.2022.03.022
- Yilmaz A, Ermis E, Boyraz N, 2016. AFL_Investigation of in vitro and in vivo anti fungal activities of different plan. Journal of Food Safety and Food Quality 122–131. https://doi.org/10.2376/0003-925X-67-122
- Yu L., Qiao N., Zhao J., Zhang H., Tian F., … Chen W., 2020. Postharvest control of Penicillium expansum in fruits: A review. Food Bioscience 36: 100633. https://doi.org/10.1016/j.fbio.2020.100633 DOI: https://doi.org/10.1016/j.fbio.2020.100633
- Zhang J., Ma S., Du S., Chen S., Sun H., 2019. Antifungal activity of thymol and carvacrol against postharvest pathogens Botrytis cinerea. Journal of Food Science and Technology 56: 2611–2620. https://doi.org/10.1007/s13197-019-03747-0 DOI: https://doi.org/10.1007/s13197-019-03747-0
- Zhao Y., Yang Y.-H., Ye M., Wang K.-B., Fan L.-M., Su F.-W., 2021. Chemical composition and antifungal activity of essential oil from Origanum vulgare against Botrytis cinerea. Food Chemistry 365: 130506. https://doi.org/10.1016/j.foodchem.2021.130506 DOI: https://doi.org/10.1016/j.foodchem.2021.130506