Pseudomonas putida has potential for biological control of bacterial spot of tomato, caused by Xanthomonas euvesicatoria
Published 2025-09-12
Keywords
- endophytes,
- biocontrol agents,
- Plant growth promotion,
- antagonistic bacteria
How to Cite
Copyright (c) 2025 Gizem ERYİGİT, Hatice OZAKTAN, Utku SANVER

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Ege University Research Foundation
Grant numbers FDK-2019-20622
Abstract
Bacterial spot of tomato, caused by Xanthomonas euvesicatoria, is a serious disease that causes yield and quality losses. There has been increased focus on biological control agents as alternatives to chemical pesticides in plant disease management. In this study, 313 endophyte and epiphyte bacterial isolates, from tomato plants sampled from different locations in Turkey, were assessed for their potential for plant growth promotion and biocontrol efficacy against X. euvesicatoria. Results obtained from in vitro assays were evaluated using the weighted ranking method, and 15 isolates were selected for in planta biocontrol evaluation against X. euvesicatoria. In efficacy tests, bacteria were introduced into tomato plants by biopriming of seeds or by spraying whole plants. The two most effective isolates reduced bacterial spot by 40–45% after seed biopriming, and 30–41% from shoot application, compared to the non-treated experimental controls. Sequence analysis using 16S rRNA primers identified one representative isolate (coded KD 91/1) as Pseudomonas putida. Tomato plants bioprimed with KD 91/1 through seed treatment had greatest biomass compared to that for the other tested bacteria. The population of P. putida KD 91/1 in tomato tissues after pathogen inoculation was approx. 7.2 × 104 cfu g-1 in shoots and 1 × 105 cfu g-1 in roots. This study indicates that antagonistic P. putida isolates are promising candidates for biological control of X. euvesicatoria.
Downloads
References
- Abbasi P.A., Khabbaz S.E., Weselowski B., Zhang L., 2015. Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario. Canadian Journal of Microbiology 61: 753–761. DOI: https://doi.org/10.1139/cjm-2015-0228
- Abo-Elyousr K.A.M., El-Hendawy H.H., 2008. Integration of Pseudomonas fluorescens and acibenzolar-S-methyl to control bacterial spot disease of tomato. Crop Protection 27: 1118–1124. DOI: https://doi.org/10.1016/j.cropro.2008.01.011
- Afzal I., Shinwari Z.K., Sikandar S., Shahzad S., 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research 221: 36–49. DOI: https://doi.org/10.1016/j.micres.2019.02.001
- Akbaba M., Ozaktan H., 2018. Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egyptian Journal of Biological Pest Control 28: 1–10. DOI: https://doi.org/10.1186/s41938-017-0020-1
- Akköprü A., Ozaktan H., 2018. Identification of rhizobacteria that increase yield and plant tolerance to angular leaf spot disease in cucumber . Plant Protection Science 54(2): 67–73. DOI: https://doi.org/10.17221/41/2017-PPS
- Al-Dahmani J.H., Abbasi P.A., Miller S.A., Hoitink H.A.J., 2003. Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease 87: 913–919. DOI: https://doi.org/10.1094/PDIS.2003.87.8.913
- Arkhipova T.N., Veselov S.U., Melentiev A.I., Martynenko E. V, Kudoyarova G.R., 2005. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil 272: 201–209. DOI: https://doi.org/10.1007/s11104-004-5047-x
- Bailey K.L., 2010. Canadian innovations in microbial biopesticides. Canadian Journal of Plant Pathology 32: 113–121. DOI: https://doi.org/10.1080/07060661.2010.484195
- Bakker A.W., Schippers B.O.B., 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biology and Biochemistry 19: 451–457. DOI: https://doi.org/10.1016/0038-0717(87)90037-X
- Balogh B., Jones J.B., Momol M.T., Olson S.M., Obradovic A., … Jackson L.E., 2003. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Disease 87: 949–954. DOI: https://doi.org/10.1094/PDIS.2003.87.8.949
- Bolat I., Bakır A.G., Korkmaz K., Gutiérrez-Gamboa G., Kaya O., 2022. Silicon and nitric oxide applications allow mitigation of water stress in Myrobalan 29C rootstocks (Prunus cerasifera Ehrh.). Agriculture 12: 1273–1283. DOI: https://doi.org/10.3390/agriculture12081273
- Bric J.M., Bostock R.M., Silverstone S.E., 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology 57: 535–538. DOI: https://doi.org/10.1128/aem.57.2.535-538.1991
- Cavaglieri L., Orlando J., Rodriguez M.I., Chulze S., Etcheverry M., 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology 156: 748–754. DOI: https://doi.org/10.1016/j.resmic.2005.03.001
- Compant S., Duffy B., Nowak J., Clément C., Barka E.A., 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology 71: 4951–4959. DOI: https://doi.org/10.1128/AEM.71.9.4951-4959.2005
- Coutinho T.A., Venter S.N., 2009. Pantoea ananatis: An unconventional plant pathogen. Molecular Plant Pathology 10: 325–335. https://doi.org/10.1111/j.1364-3703.2009.00542.x. DOI: https://doi.org/10.1111/j.1364-3703.2009.00542.x
- Davin-Regli A., Pagès J.M., 2015. Enterobacter aerogenes and Enterobacter cloacae; Versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology 6: 392–402. DOI: https://doi.org/10.3389/fmicb.2015.00392
- De Boer M., Bom P., Kindt F., Keurentjes J.J.B., van der Sluis I., … Bakker P.A.H.M., 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93: 626–632. DOI: https://doi.org/10.1094/PHYTO.2003.93.5.626
- De Maayer P., Chan W.Y., Venter S.N., Toth I.K., Birch P.R.J., … Coutinho T.A., 2010. Genome sequence of Pantoea ananatis LMG20103, the causative agent of Eucalyptus blight and dieback. Journal of Bacteriology 192: 2936–2937. https://doi.org/10.1128/JB.00060-10. DOI: https://doi.org/10.1128/JB.00060-10
- Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., … Vorholt J.A., 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences 106: 16428–16433. DOI: https://doi.org/10.1073/pnas.0905240106
- Dos Santos R.M., Diaz P.A.E., Lobo L.L.B., Rigobelo E.C., 2020. Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Frontiers in Sustainable Food Systems 4: 136–151. DOI: https://doi.org/10.3389/fsufs.2020.00136
- El-Hendawy H.H., Osman M.E., Sorour N.M., 2005. Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis. Microbiological Research 160: 343–352. DOI: https://doi.org/10.1016/j.micres.2005.02.008
- FAO, 2022. Statistical Yearbook. Available at: https://www.fao.org/faostat/en/#home.
- Gardener B.B.M., Fravel D.R., 2002. Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Progress 3: 17–32. DOI: https://doi.org/10.1094/PHP-2002-0510-01-RV
- Glick B.R., 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41: 109–117. DOI: https://doi.org/10.1139/m95-015
- Goel R., Kumar V., Suyal D.K., Dash B., Kumar P., Soni R., 2017. Root-associated bacteria: rhizoplane and endosphere. In: Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 1: Fundamental Mechanisms, Methods and Functions, Springer, 161–176 pp. DOI: https://doi.org/10.1007/978-981-10-5813-4_9
- Goswami D., Thakker J.N., Dhandhukia P.C., 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture 2: 1127500–1127514. DOI: https://doi.org/10.1080/23311932.2015.1127500
- Hernandez M.N., Lindow S.E., 2019. Pseudomonas syringae increases water availability in leaf microenvironments via production of hygroscopic syringafactin. Applied and Environmental Microbiology 85: 14-19. DOI: https://doi.org/10.1128/AEM.01014-19
- Hodkinson B.P., Lutzoni F., 2009. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49: 163–180. DOI: https://doi.org/10.1007/s13199-009-0049-3
- Jetiyanon K., Kloepper J.W., 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control 24: 285–291. DOI: https://doi.org/10.1016/S1049-9644(02)00022-1
- Jochum M.D., McWilliams K.L., Borrego E.J., Kolomiets M. V., Niu G., … Jo Y.K., 2019. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Frontiers in Microbiology 10. DOI: https://doi.org/10.3389/fmicb.2019.02106
- John J.F., Sharbaugh R.J., Bannister E.R., 1982. Enterobacter cloacae: bacteremia, epidemiology, and antibiotic resistance. Reviews of Infectious Diseases 4: 13–28. https://doi.org/10.1093/clinids/4.1.13. DOI: https://doi.org/10.1093/clinids/4.1.13
- Kampers L.F.C., Volkers R.J.M., Martins dos Santos V.A.P., 2019. Pseudomonas putida KT 2440 is HV 1 certified, not GRAS. Microbial Biotechnology 12: 845–848. DOI: https://doi.org/10.1111/1751-7915.13443
- Kang S., Cho H.S., Cheong H., Ryu C.M., Kim J.F., Park S.H., 2007. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). Journal of Microbiology and Biotechnology 17(1): 96–103.
- Kashyap B.K., Solanki M.K., Pandey A.K., Prabha S., Kumar P., Kumari B., 2019. Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology. In: Plant Health Under Biotic Stress: Volume 2: Microbial Interactions, Springer, 219–236 pp. DOI: https://doi.org/10.1007/978-981-13-6040-4_11
- Khan A., Zhao X.Q., Javed M.T., Khan K.S., Bano A., … Masood S., 2016. Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environmental and Experimental Botany 124: 120–129. DOI: https://doi.org/10.1016/j.envexpbot.2015.12.011
- Klement Z., Mavridis A., Rudolph K., Vidaver A., Perombelon M.C.M., … Rudolph K., 1990. Inoculation of plant tissues. In: Methods in Phytobacteriology, Akadémiai Kiadó, Budapest, 94–124 pp.
- Kloepper J.W., Schroth M.N., Miller T.D., 1980. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70: 1078–1082. DOI: https://doi.org/10.1094/Phyto-70-1078
- Köhl J., Kolnaar R., Ravensberg W.J., 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science 10: 845–864. DOI: https://doi.org/10.3389/fpls.2019.00845
- Lazarovits G., Turnbull A., Johnston-Monje D., 2014. Plant Health Management: Biological Control of Plant Pathogens. In: Encyclopedia of Agriculture and Food Systems; Elsevier Ltd.: London, UK, 2014; pp. 388–399. DOI: https://doi.org/10.1016/B978-0-444-52512-3.00177-7
- Liu J., Tang L., Gao H., Zhang M., Guo C., 2019. Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. Journal of the Science of Food and Agriculture 99: 281–289. https://doi.org/10.1002/jsfa.9185. DOI: https://doi.org/10.1002/jsfa.9185
- Lucas J.A., 2011. Advances in plant disease and pest management. The Journal of Agricultural Science 149: 91–114. DOI: https://doi.org/10.1017/S0021859610000997
- Lwin M., Ranamukhaarachchi S.L., 2006. Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. International Journal of Agriculture and Biology 8: 657–660.
- Mahmood A., Turgay O.C., Farooq M., Hayat R., 2016. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology 92(8): 112–126. DOI: https://doi.org/10.1093/femsec/fiw112
- Maignien L., DeForce E.A., Chafee M.E., Eren A.M., Simmons S.L., 2014. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5: 10–1128. DOI: https://doi.org/10.1128/mBio.00682-13
- Martin H.L., Hamilton V.A., Kopittke R.A., 2004. Copper tolerance in Australian populations of Xanthomonas campestris pv. vesicatoria contributes to poor field control of bacterial spot of pepper. Plant Disease 88: 921–924. DOI: https://doi.org/10.1094/PDIS.2004.88.9.921
- Martinez-Klimova E., Rodríguez-Peña K., Sánchez S., 2017. Endophytes as sources of antibiotics. Biochemical Pharmacology 134: 1–17. DOI: https://doi.org/10.1016/j.bcp.2016.10.010
- Michelson I.F., Lachman W.H., Allen D.D., 1958. The use of the “Weighted-Rankit” method in variety trials. ASHS Proceedings 71: 334–338.
- Mirik M., Aysan Y., Cinar O., 2008. Biological control of bacterial spot disease of pepper with Bacillus strains. Turkish Journal of Agriculture and Forestry 32: 381–390.
- Molina Delgado L., Udaondo Z., Duque E., Fernández M., Bernal Guzmán P., … Ramos J.L., 2016. Specific Gene Loci of Clinical Pseudomonas putida Isolates. Plos ONE 11(1): 147–171. DOI: https://doi.org/10.1371/journal.pone.0147478
- Moore J.A.M., Abraham P.E., Michener J.K., Muchero W., Cregger M.A., 2022. Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects. New Phytologist 234(6): 1914–1918. DOI: https://doi.org/10.1111/nph.18010
- Moradigaravand D., Reuter S., Martin V., Peacock S.J., Parkhill J., 2016. The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland. Nature Microbiology https://doi.org/10.1038/nmicrobiol.2016.173. DOI: https://doi.org/10.1038/nmicrobiol.2016.173
- Nautiyal C.S., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170: 265–270. DOI: https://doi.org/10.1016/S0378-1097(98)00555-2
- Nejad P., Johnson P.A., 2000. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biological Control 18: 208–215. DOI: https://doi.org/10.1006/bcon.2000.0837
- Omar B.A., Atif H.A., Mogahid M.E., 2014. Comparison of three DNA extraction methods for polymerase chain reaction (PCR) analysis of bacterial genomic DNA. African Journal of Microbiology Research 8: 598–602. DOI: https://doi.org/10.5897/AJMR2013.6459
- Pajčin I., Vlajkov V., Frohme M., Grebinyk S., Grahovac M., … Grahovac J., 2020. Pepper bacterial spot control by Bacillus velezensis: bioprocess solution. Microorganisms 8: 1463. DOI: https://doi.org/10.3390/microorganisms8101463
- Pertot I., Puopolo G., Giovannini O., Angeli D., Sicher C., Perazzolli M., 2016. Advantages and limitations involved in the use of microbial biofungicides for the control of root and foliar phytopathogens of fruit crops. Italus Hortus 23: 3–12.
- Polidore A.L.A., Furiassi L., Hergenrother P.J., Metcalf W.W., 2021. A phosphonate natural product made by Pantoea ananatis is necessary and sufficient for the hallmark lesions of onion center rot. mBio 12: 1–18. DOI: 10.1128/mBio.03402-20. DOI: https://doi.org/10.1128/mBio.03402-20
- Potnis N., Timilsina S., Strayer A., Shantharaj D., Barak J.D., … Jones J.B., 2015. Bacterial spot of tomato and pepper: Diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology 16: 907–920. DOI: https://doi.org/10.1111/mpp.12244
- Purtschert-Montenegro G., Cárcamo-Oyarce G., Pinto-Carbó M., Agnoli K., Bailly A., Eberl L., 2022. Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nature Microbiology 7: 1547–1557. DOI: https://doi.org/10.1038/s41564-022-01209-6
- Raza W., Ling N., Yang L., Huang Q., Shen Q., 2016. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Scientific Reports 6: 24856. DOI: https://doi.org/10.1038/srep24856
- Ritchie, 2000. Bacterial spot of pepper and tomato. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2000-1027-01. DOI: https://doi.org/10.1094/PHI-I-2000-1027-01
- Rosenblueth M., Martínez-Romero E., 2006. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions 19: 827–837. DOI: https://doi.org/10.1094/MPMI-19-0827
- Sahin F., Miller S.A., 1998. Resistance in Capsicum pubescens to Xanthomonas campestris pv. vesicatoria pepper race 6. Plant Disease 82: 794–799. DOI: https://doi.org/10.1094/PDIS.1998.82.7.794
- Sandhya V., Shrivastava M., Ali S.Z., Sai Shiva Krishna Prasad V., 2017. Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russian Agricultural Sciences 43: 22–34. DOI: https://doi.org/10.3103/S1068367417010165
- Santoyo G., Moreno-Hagelsieb G., del Carmen Orozco-Mosqueda M., Glick B.R., 2016. Plant growth-promoting bacterial endophytes. Microbiological Research 183: 92–99. DOI: https://doi.org/10.1016/j.micres.2015.11.008
- Saravanakumar D., Samiyappan R., 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology 102: 1283–1292. DOI: https://doi.org/10.1111/j.1365-2672.2006.03179.x
- Schaad N.W., Jones J.B., Chun W., 2001. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. American Phytopathological Society (APS Press). USA, 373pp.
- Sharma S., Bhattarai K., 2019. Progress in developing bacterial spot resistance in tomato. Agronomy 9: 26. DOI: https://doi.org/10.3390/agronomy9010026
- Shrestha A., Kim B.S., Park D.H., 2014. Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Science and Technology 24: 763–779. DOI: https://doi.org/10.1080/09583157.2014.894495
- Stenberg J.A., Sundh I., Becher P.G., Björkman C., Dubey M., … Jonsson M., 2021. When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science 94: 665–676. DOI: https://doi.org/10.1007/s10340-021-01354-7
- Talibi I., Boubaker H., Boudyach E.H., Ait Ben Aoumar A., 2014. Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiology 117: 1–17. DOI: https://doi.org/10.1111/jam.12495
- Tasleem M., El-Sayed A.-A.A.A., Hussein W.M., Alrehaily A., 2023. Pseudomonas putida metallothionein: structural analysis and implications of sustainable heavy metal detoxification in Madinah. Toxics 11: 864. DOI: https://doi.org/10.3390/toxics11100864
- Tiwari S., Lata C., Chauhan P.S., Nautiyal C.S., 2016. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry 99: 108–117. DOI: https://doi.org/10.1016/j.plaphy.2015.11.001
- Townsend G., Heuberger J., 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter 27: 340–343.
- Turfan N., Düzel Ö., 2023. Investigation of Foliar L-Glutamic Application on the Resistance to the Capacity of the SC2121 Tomato Variety (Solanum lycopersicum) L.) to Long-Term Salinity Stress. Yuzuncu Yıl University Journal of Agricultural Sciences 33: 327–337. DOI: https://doi.org/10.29133/yyutbd.1260183
- Udaondo Z., Molina L., Segura A., Duque E., Ramos J.L., 2016. Analysis of the core genome and pangenome of Pseudomonas putida. Environmental Microbiology 18: 3268–3283. DOI: https://doi.org/10.1111/1462-2920.13015
- Völksch B., May R., 2001. Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microbial Ecology 41: 132–139. DOI: https://doi.org/10.1007/s002480000078
- Wahab A., Bibi H., Batool F., Muhammad M., Ullah S., … Abdi G., 2024. Plant growth-promoting rhizobacteria biochemical pathways and their environmental impact: a review of sustainable farming practices. Plant Growth Regulation 104: 637–662. DOI: https://doi.org/10.1007/s10725-024-01218-x
- Xin X.-F., Nomura K., Aung K., Velásquez A.C., Yao J., … He S.Y., 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539: 524–529. DOI: https://doi.org/10.1038/nature20166
- Xue Y., Qiu T., Sun Z., Liu F., Yu B., 2022. Mercury bioremediation by engineered Pseudomonas putida KT2440 with adaptationally optimized biosecurity circuit. Environmental Microbiology 24: 3022–3036. DOI: https://doi.org/10.1111/1462-2920.16038
