Vol. 63 No. 2 (2024)
Articles

Prevalence and characterization of Burkholderia gladioli in Iran, from bacterial dry rot of saffron corms (Crocus sativus L.)

Mahmoud-Reza KARIMI-SHAHRI
Department of Plant Protection, Razavi-Khorasan Agricultural and Natural Resources Research Center, (AREEO), Mashhad
Mohammad ZAKIAGHL
Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad

Published 2024-09-16

Keywords

  • Saffron dry rot,
  • pathogenicity,
  • phenotypic tests,
  • molecular identification

How to Cite

[1]
M.-R. KARIMI-SHAHRI and M. ZAKIAGHL, “Prevalence and characterization of Burkholderia gladioli in Iran, from bacterial dry rot of saffron corms (Crocus sativus L.)”, Phytopathol. Mediterr., vol. 63, no. 2, pp. 283–294, Sep. 2024.

Abstract

Iran is the main world producer of saffron (Crocus sativus L.), but a bacterial disease continues to threaten saffron production, causing severe flower failure, rot on flowering tubes, delayed vegetative growth, premature yellowing of leaves, bare patches in saffron farms, reddish-brown lesions in the germination zones of roots, and rot of saffron corms. Field surveys in Razavi-Khorasan and Southern-Khorasan provinces revealed high incidence of Burkholderia gladioli dry rot symptoms in saffron farms, with symptoms observed during flowering on leaves and corms. Twenty-four bacterial isolates from symptomatic saffron corms from different parts of Iran were characterized. These bacteria were identified as Burkholderia gladioli, based using phenotypic characteristics, species-specific PCR, and sequencing analyses of the 16S rRNA and 16S-23S intergenic transcribed spacer regions. All 24 isolates triggered hypersensitive reactions in tobacco and pelargonium leaves, although pathogenicity tests showed that only 21 isolates were capable of causing rots on saffron corms.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Abachi H., Moallem M., Taghavi S.M., Hamidizade M., Soleimani A., … Osdaghi E., 2024. Garlic bulb decay and soft rot caused by the cross-kingdom pathogen Burkholderia gladioli. Plant Disease 108: 684–693. https://doi.org/10.1094/PDIS-08-23-1603-RE DOI: https://doi.org/10.1094/PDIS-08-23-1603-RE
  2. Ahmad T., Bashir A., Farooq S., Riyaz-Ul-Hassan S., 2022. Burkholderia gladioli E39CS3, an endophyte of Crocus sativus L., induces host resistance against corm-rot caused by Fusarium oxysporum. Journal of Applied Microbiology 132: 495–508. https://doi.org/10.1111/jam.15190 DOI: https://doi.org/10.1111/jam.15190
  3. Baxter I.A., Lambert P.A., Simpson I.N., 1997. Isolation from clinical sources of Burkholderia cepacia possessing characteristics of Burkholderia gladioli. Journal of Antimicrobial Chemotherapy 39: 169–175. https://doi.org/10.1093/jac/39.2.169 DOI: https://doi.org/10.1093/jac/39.2.169
  4. Bauernfeind A., Roller C., Meyer D., Jungwirth R., Schneider I., 1998. Molecular procedure for rapid detection of Burkholderia mallei and Burkholderia pseudomallei. Journal of Clinical Microbiology 36: 2737–2741. https://doi.org/10.1128/jcm.36.9.2737-2741.1998 DOI: https://doi.org/10.1128/JCM.36.9.2737-2741.1998
  5. Castro-González R., Martínez-Aguilar L., Ramírez-Trujillo A., Estada-de los santos P., Cballero-Mellado J., 2011. High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 345: 155–169. https://doi.org/10.1007/s11104-011-0768-0 DOI: https://doi.org/10.1007/s11104-011-0768-0
  6. Chiarini L., Bevivino A., Dalmastri C., Tabacchioni S., Visca P., 2006. Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiology 14: 277–86. https://doi.org/10.1016/j.tim.2006.04.006 DOI: https://doi.org/10.1016/j.tim.2006.04.006
  7. Coenye T., Vandamme P., 2003. Diversity and significance of Burkholderia species occupying diverse ecological niches. Enviromental Microbiology 5: 719–29. https://doi.org/10.1046/j.1462-2920.2003.00471.x DOI: https://doi.org/10.1046/j.1462-2920.2003.00471.x
  8. Coenye T., Schouls L. M., Govan J. R. W., Kersters K., Vandamme P., 1999. Identification of Burkholderia species and genomovars from cystic fibrosis patients by AFLP fingerprinting. International Journal Systematic Bacteriology 49: 1657–1666. https://doi.org/10.1099/00207713-49-4-1657 DOI: https://doi.org/10.1099/00207713-49-4-1657
  9. Compant S., Nowak J., Coenye T., Clément C., Ait Barka E., 2008. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiology Review 32: 607–626. https://doi.org/10.1111/j.1574-6976.2008.00113.x DOI: https://doi.org/10.1111/j.1574-6976.2008.00113.x
  10. EPPO. 2006. PM 7/58 (1) Burkholderia caryophylli. Bulletin OEPP/EPPO Bulletin 36: 95–98. https://doi.org/10.1111/j.1365-2338.2006.00918.x DOI: https://doi.org/10.1111/j.1365-2338.2006.00918.x
  11. Fiori M., Ligios V., Schiaffino A., 2011. Identification and characterization of Burkholderia isolates obtained from bacterial rot of saffron (Crocus sativus L.) grown in Italy. Phytopathologia Mediterranea 50: 450–461. https://dx.doi.org/10.14601/Phytopathol_Mediterr-8730
  12. Furuya N., Ura H., Iiyama K., Matsumoto M., Takeshita M., Takanami Y. 2002. Specific oligonucleotide primers based on sequences of the 16S–23S rDNA spacer region for the detection of Burkholderia gladioli by PCR. Journal General Plant Pathology 68: 220–224. https://doi.org/10.1007/PL00013080 DOI: https://doi.org/10.1007/PL00013080
  13. Gee J.E., Sacchi C.T., Glass M.B., De B.K., Weyant R.S., …Popovic T., 2003. Use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei. Journal Clinical Microbiology 41: 4647–54. https://doi.org/10.1128/JCM.41.10.4647-4654.2003 DOI: https://doi.org/10.1128/JCM.41.10.4647-4654.2003
  14. Hamidizade M., Taghavi S.M., Soleimani A., Bouazar M., Abachi H., Portier P., Osdaghi E., 2024. Wild mushrooms as potential reservoirs of plant pathogenic bacteria: a case study on Burkholderia gladioli. Microbiology Spectrum 12(4): e03395-23. https://doi.org/10.1128/spectrum.03395-23 DOI: https://doi.org/10.1128/spectrum.03395-23
  15. Holt J.G., 1994. Bergey’s Manual of Determinative Bacteriology. 9th ed. Lippincott Williams and Wilkins, Baltimore, MD, USA.
  16. Jeong Y., Kim J., Kim S., Kang Y., Nagamatsu T., Hwang I., 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Disease 87: 890–895. https://doi.org/10.1094/PDIS.2003.87.8.890 DOI: https://doi.org/10.1094/PDIS.2003.87.8.890
  17. Jiao Z., Kawamura Y., Mishima N., Yang R., Li N., Liu X., Ezaki T., 2003. Need to differentiate lethal toxin-producing strains of Burkholderia gladioli, which cause severe food poisoning: description of B. gladioli pathovar cocovenenans and an emended description of B. gladioli. Microbiology and Immunology 47: 915–25. https://doi.org/10.1111/j.1348-0421.2003.tb03465.x DOI: https://doi.org/10.1111/j.1348-0421.2003.tb03465.x
  18. Jung W.-S., Lee J., Kim M.-I., Ma J., Nagamatsu T., … Rhee S. 2011. Structural and functional analysis of phytotoxin toxoflavin-degrading enzyme. PLoS ONE 26: e22443. https://doi.org/10.1371/journal.pone.0022443 DOI: https://doi.org/10.1371/journal.pone.0022443
  19. Khezri M., Karimi Shahri M.R., Ghasemi A. 2023. Bacterial rot disease of saffron corm and leaf. Plant Pathology Science 12: 74–83. Doi: 10.2982/PPS.12.1.74
  20. Kim J., Oh J., Choi O., Kang Y., Kim H., … Hwang I., 2009. Biochemical evidence for ToxR and ToxJ binding to the tox operons of Burkholderia glumae and mutational analysis of ToxR. Journal Bacteriology 191: 4870–4878. http://dx.doi.org/10.1128/JB.01561-08 DOI: https://doi.org/10.1128/JB.01561-08
  21. Koocheki A., Khajeh-Hosseini M., 2020. Saffron: Science, Technology and Health. Woodhead Publishing, 580 pp. eBook ISBN: 9780128187401.
  22. Kowalska B., Smolińska U., Oskiera M., 2015. Burkholderia gladioli associated with soft rot of onion bulbs in Poland. Journal Plant Pathology 97: 37–43. http://www.jstor.org/stable/24579128
  23. Kuklinsky-Sobral J., Araújo W.L., Mendes R., Geraldi I.O., Pizzirani-Kleiner A.A., Azevedo J.L., 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Enviromental Microbiology 6: 1244–51. https://doi.org/10.1111/j.1462-2920.2004.00658.x DOI: https://doi.org/10.1111/j.1462-2920.2004.00658.x
  24. Lee C.J., Lee J.T., Kwon J.H., Kim B.C., Park W. 2005. Occurrence of bacterial soft rot of onion plants caused by Burkholderia gladioli pv. alliicola in Korea. Australasian Plant Pathology 34: 287–292. https://doi.org/10.1071/AP05024 DOI: https://doi.org/10.1071/AP05024
  25. Lee C.J., Lee J.T., Kim Y.T., Jhune C.S., Cheong J.C., Park W., 2012. Phytopathogenicity of Burkholderia gladioli pv. alliicola CH1 and production of PGase isozymes. Research in Plant Disease 18: 240–244. https://doi.org/10.5423/rpd.2012.18.3.240 DOI: https://doi.org/10.5423/RPD.2012.18.3.240
  26. Lee C.J., Lee J.T. Park H.S., Lee E., Min G., 2021. Molecular analysis of the pathogenicity-related polygalacturonase gene pehA of Burkholderia gladioli pv. alliicola isolated from onion (Allium cepae. L). Physiological and Molecular Plant Pathology 115: 101670. https://doi.org/10.1016/j.pmpp.2021.101670 DOI: https://doi.org/10.1016/j.pmpp.2021.101670
  27. Li X., De Boer SH., 2005. First Report of Burkholderia andropogonis causing leaf spots of Bougainvillea sp. in Hong Kong and clover in Canada. Plant Disease 89: 1132. https://doi.org/10.1094/PD-89-1132A DOI: https://doi.org/10.1094/PD-89-1132A
  28. Li X., Li Y., Wang R., Wang Q., Lu L., 2019. Toxoflavin produced by Burkholderia gladioli from Lycoris aurea is a new broad-spectrumffungicide. Applied Enviromental Microbiology 85: e00106-19. https://doi.org/10.1128/AEM.00106-19 DOI: https://doi.org/10.1128/AEM.00106-19
  29. Liguori A.P., Warrington S.D., Ginther J.L., Pearson T., Bowers J., Glass M.B., … Tuanyok A., 2011. Diversity of 16S-23S rDNA internal transcribed spacer (ITS) reveals phylogenetic relationships in Burkholderia pseudomallei and its near-neighbors. PLoS One 6: e29323. https://doi.org/10.1371/journal.pone.0029323 DOI: https://doi.org/10.1371/journal.pone.0029323
  30. Lincoln S.P., Fermor T.R., Stead D.E., Sellwood J.E. 1991. Bacterial soft rot of Agaricus bitorquis. Plant Pathology 40: 136–144. https://doi.org/10.1111/j.1365-3059.1991.tb02302.x. DOI: https://doi.org/10.1111/j.1365-3059.1991.tb02302.x
  31. Maeda Y., Shinohara H., Kiba A., Ohnishi K., Furuya N., … Hikichi Y., 2006. Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. International Journal of Systematic and Evolutionary Microbiology 56: 1031–1038. https://doi.org/10.1099/ijs.0.64184-0 DOI: https://doi.org/10.1099/ijs.0.64184-0
  32. McCulloch L., 1921. A bacterial disease of gladiolus. Sci­ence 54: 115–116. doi: 10.1126/science.54.1388.115 DOI: https://doi.org/10.1126/science.54.1388.115
  33. Marques J.M. da Silva T.F., Vollu R.E., Blank A.F., Ding G.C., … Smalla K., 2014. Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiology Ecology 88: 424–435. https://doi.org/10.1111/1574-6941.12313 DOI: https://doi.org/10.1111/1574-6941.12313
  34. Marques J.M., da Silva T.F., Vollú R.E., de Lacerda J.R.M., Blank A.F., … Seldin L., 2015. Bacterial endophytes of sweet potato tuberous roots affected by the plant genotype and growth stage. Applied Soil Ecology 96: 273–281. https://doi.org/10.1016/j.apsoil.2015.08.020 DOI: https://doi.org/10.1016/j.apsoil.2015.08.020
  35. Moon H., Park H.J., Jeong A., Han S.W., Park C.J., 2017. Isolation and identification of Burkholderia gladioli on Cymbidium orchids in Korea. Biotechnology and Biotechnological Equipment 31: 280–288. https://doi.org/10.1080/13102818.2016.1268069 DOI: https://doi.org/10.1080/13102818.2016.1268069
  36. Nandakumar R., Shahjahan A.K.M., Yuan X.L., Dickstein E.R., Groth D.E., … Rush M.C., 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Disease 93: 896–905. https://doi.org/10.1094/PDIS-93-9-0896 DOI: https://doi.org/10.1094/PDIS-93-9-0896
  37. Payne G.W., Vandamme P., Morgan SH., Lipuma J.J., Coenye T., … Mahenthiralingam E., 2005. Development of a recA gene-based identification approach for the entire Burkholderia genus. Applied Environmental Microbiology 71: 3917–27. https://doi.org/10.1128/AEM.71.7.3917-3927.2005 DOI: https://doi.org/10.1128/AEM.71.7.3917-3927.2005
  38. Saddler G.S. (ed.) 1994. Burkholderia gladioli pv. gladioli. IMI Descriptions of Fungi and Bacteria, Vol. 122. CAB International, Wallingford, UK, 1218 pp.
  39. Sharma T., Kaul S., Dhar M.K., 2015. Diversity of culturable bacterial endophytes of saffron in Kashmir, India. Springerplus 4: 661. https://doi.org/10.1186/s40064-015-1435-3 DOI: https://doi.org/10.1186/s40064-015-1435-3
  40. Stoyanova M., Hristova P., Petrov N., Moncheva P., Bogatzevska N. 2011a. Method for differentiating Bukholderia gladioli pathovars. Science & Technology 1(6): 15-19.
  41. Stoyanova M., Kizheva Y., Chipeva V., Bogatzevska N., Moncheva P. 2011b. Phytopathogenic Burkholderia species in bulbs plants in Bulgaria. Biotechnology & Biotechnological Equipment 25(3): 2477–2483. https://www.researchgate.net/publication/260236547 DOI: https://doi.org/10.5504/BBEQ.2011.0054
  42. Suárez-Moreno Z.R., Caballero-Mellado J., Coutinho B.G., Mendonça-Previato L., James E.K., Venturi V. 2012. Common features of environmental and potentially beneficial plant-associated Burkholderia. Microbial Ecology 63: 249–66. https://doi.org/10.1007/s00248-011-9929-1 DOI: https://doi.org/10.1007/s00248-011-9929-1
  43. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Molecular Biology and Evolution 28: 2731–2739. https://doi.org/10.1093/molbev/msr121 DOI: https://doi.org/10.1093/molbev/msr121
  44. Thibault F.M., Valade E., Vidal D.R., 2004. Identification and discrimination of Burkholderia pseudomallei, B. mallei, and B. thailandensis by real-time PCR targeting type III secretion system genes. Journal Clinical Microbiology 42: 5871–5874. https://doi.org/10.1128/jcm.42.12.5871-5874.204 DOI: https://doi.org/10.1128/JCM.42.12.5871-5874.2004
  45. United Nations Industrial Development Organization (UNIDO), 2022. Online: http://open.unido.org
  46. Ura H., Furuya N., Iiyama K., Hidaka M., Tsuchiya K., Matsuyma M., 2006. Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. Journal General Plant Pathology 72: 98–103. https://doi.org/10.1007/s10327-005-0256-6 DOI: https://doi.org/10.1007/s10327-005-0256-6
  47. Vega F.E., Pava-Ripoll M., Posada F., Buyer J.S., 2005. Endophytic bacteria in Coffea arabica L. J. Basic Microbiology 45: 371–380. https://doi.org/10.1002/jobm.200410551 DOI: https://doi.org/10.1002/jobm.200410551
  48. Vermis K., Coenye T., Mahenthiralingam E., Nelis H.J., Vandamme P., 2002. Evaluation of species-specific recA-based PCR tests for genomovar level identification within the Burkholderia cepacia complex. Journal Medical Microbiology 51: 937–940. https://doi.org/10.1099/0022-1317-51-11-937Wang M., Wei P., Cao M., Zhu L., Lu Y., 2016. First Report of Rice Seedling Blight Caused by Burkholderia plantarii in North and Southeast China. Plant Disease 100: 645. https://doi.org/10.1094/PDIS-07-15-0765-PDN DOI: https://doi.org/10.1099/0022-1317-51-11-937
  49. Whitby P.W., Carter K.B., Hatter K.L., LiPuma J.J., Stull T.L., 2000. Identification of members of the Burkholderia cepacia complex by species-specific PCR. Journal Clinical Microbiology 38: 2962–5. https://doi.org/10.1128/JCM.38.8.2962-2965.2000 DOI: https://doi.org/10.1128/JCM.38.8.2962-2965.2000
  50. Woo P.C., Ng K.H., Lau S.K., Yip K.T., Fung A.M., … Yuen K.Y., 2003. Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. Journal Clinical Microbiology 41: 1996–2001. https://doi.org/10.1128/jcm.41.5.1996-2001.2003Xu C.X., Ge Q.X. 1990. A preliminay study on corm rot of Crocus sativus L. Acta Agriculturae, Universitatis Zhejiangensis 16 (suppl. 2): 241–246 DOI: https://doi.org/10.1128/JCM.41.5.1996-2001.2003
  51. Xuan L.N.T., Van Dung T., Hung N.N., Diep C.N., 2016. Isolation and characterization of endophytic and rhizopheric bacteria associated sweet-potato plants cultivated on soils of the Mekong Delta. Vietnam 6: 129–149. https://doi.org/10.20959/wjpps20169-7671
  52. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., … Arakawa M., 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology and Immunology 36: 1251–1275. https://doi.org/10.1111/j.1348-0421.1992.tb02129.x DOI: https://doi.org/10.1111/j.1348-0421.1992.tb02129.x