Vol. 62 No. 3 (2023)
Articles

Phytophthora spp. diversity in commercial nursery stocks shown through examination of plant health practices for growers and traders of ornamental plants

Duccio MIGLIORINI
National Research Council - Institute for Sustainable Plant Protection, Sesto Fiorentino
Francesco PECORI
National Research Council - Institute for Sustainable Plant Protection, Sesto Fiorentino
Giulia ARATI
National Research Council - Institute for Sustainable Plant Protection, Sesto Fiorentino
Nicola LUCHI
National Research Council - Institute for Sustainable Plant Protection, Sesto Fiorentino
Emanuele BEGLIOMINI
Giorgio Tesi Vivai S.S., Pistoia
Alessandro GNESINI
Giorgio Tesi Vivai S.S., Pistoia
Luisa GHELARDINI
DAGRI Department of Agricultural, Food, Environmental and Forest Sciences and Technologies, University of Florence Piazzale delle Cascine 18, 50144 Firenze
Alberto SANTINI
National Research Council - Institute for Sustainable Plant Protection, Sesto Fiorentino

Published 2023-12-30

Keywords

  • Oomycetes spread,
  • biological hazard,
  • potted plants health,
  • stakeholder involvement,
  • risks warning

How to Cite

[1]
D. MIGLIORINI, “Phytophthora spp. diversity in commercial nursery stocks shown through examination of plant health practices for growers and traders of ornamental plants”, Phytopathol. Mediterr., vol. 62, no. 3, pp. 489–497, Dec. 2023.

Abstract

Management of Phytophthora in commercial plant nurseries is important for biosecurity of traded plants, and monitoring of incidence of this important plant pathogen is a prerequisite to prevent its spread. Potted plants showing Phytophthora spp. symptoms, and nursery irrigation and runoff water, were sampled from a commercial and a non-commercial nursery in Tuscany, Italy. The samples were processed to detect Phytophthora spp., using baiting, and molecular identification of obtained isolates. High Phytophthora incidence was shown in the commercial nursery. Twelve Phytophthora spp. were isolated from potted plants or nursery runoff water. Individual symptomatic potted plants were infected with up to four pathogenic Phytophthora spp. The water sampled from nursery drainage canals had the greatest Phytophthora species diversity, with less diversity in ‘flow-through’ water samples (irrigation water percolated through potted plants) and samples from water puddles inside the nurseries. This study showed high incidence of Phytophthora in the commercial nursery, and associated risk of spread of these pathogens within and outside nursery operations. Lack of appropriate disease management probably increases occurrence of these pathogens.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Abad Z.G., Burgess T.I., Redford A.J., Bienapfl J.C., Srivastava S., Mathew, R. and Jennings K., 2023. IDphy: An International Online Resource for Molecular and Morphological Identification of Phytophthora. Plant Disease 107: 987–998. https://doi.org/10.1094/PDIS-02-22-0448-FE DOI: https://doi.org/10.1094/PDIS-02-22-0448-FE
  2. Barber P.A., Paap T., Burgess T.I., Dunstan W., Hardy G.E.S.J., 2013. A diverse range of Phytophthora species are associated with dying urban trees. Urban Forestry and Urban Greening, Elsevier GmbH. 12: 569–575. https://doi.org/10.1016/j.ufug.2013.07.009 DOI: https://doi.org/10.1016/j.ufug.2013.07.009
  3. Benavent-Celma C., Puertolas A., McLaggan D., van West P., Woodward S., 2021. Pathogenicity and host range of Pythium kashmirense—a soil-borne oomycete recently discovered in the uk. Journal of Fungi 7 https://doi.org/10.3390/jof7060479 DOI: https://doi.org/10.3390/jof7060479
  4. Brasier C.M., 1999. Phytophthora pathogens of trees: their rising profile in Europe. Information Note 30, 1–5. Available at: www.gov.uk/government/organisations/forestry-commission. Accessed November 1, 2023.
  5. Brasier C.M., Robredo F., Ferraz J.F.P., 1993. Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology 42: 140–145. https://doi.org/10.1111/j.1365-3059.1993.tb01482.x DOI: https://doi.org/10.1111/j.1365-3059.1993.tb01482.x
  6. Brasier C., Scanu B., Cooke D., Jung T., 2022. Phytophthora: an ancient, historic, biologically and structurally cohesive and evolutionarily successful generic concept in need of preservation. IMA Fungus 13 https://doi.org/10.1186/s43008-022-00097-z DOI: https://doi.org/10.1186/s43008-022-00097-z
  7. Burgess T.I., Scott J.K., McDougall K.L., Stukely M.J.C., Crane C., … Hardy G.E.S.J., 2017. Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Global Change Biology. Global Change Biology 23: 1661–1674. https://doi.org/10.1111/gcb.13492 DOI: https://doi.org/10.1111/gcb.13492
  8. Burgess T.I., López‐Villamor A., Paap T., Williams B., Belhaj R., … Hardy G.E.S.J., 2021. Towards a best practice methodology for the detection of Phytophthora species in soils. Plant Pathology 70: 604–614. https://doi.org/10.1111/ppa.13312 DOI: https://doi.org/10.1111/ppa.13312
  9. Černý K., Gregorová B., Strnadová V., Tomšovský M., Holub V., Gabrielová Š., 2008. Phytophthora cambivora causing ink disease of sweet chestnut recorded in the Czech Republic. Czech Mycology 60: 267–276. DOI: https://doi.org/10.33585/cmy.60210
  10. Cooke D.E.L., Drenth A., Duncan J.M., Wagels G., Brasier C.M., 2000. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology 30: 17–32. https://doi.org/10.1006/fgbi.2000.1202 DOI: https://doi.org/10.1006/fgbi.2000.1202
  11. Crous P., Cowan D., Yilmaz N., Larsson E., Angelini C., … Leonard P., 2020. Fungal Planet description sheets. Persoonia 45: 251–409. https://doi.org/10.3767/persoonia.2020.45.10 DOI: https://doi.org/10.3767/persoonia.2020.45.10
  12. Dell B., Malajczuk N., 1989. Jarrah dieback – A disease caused by Phytophthora cinnamomi. In: The Jarrah Forest (Springer, ed.), Dordrecht, The Netherlands, 67–87. DOI: https://doi.org/10.1007/978-94-009-3111-4_6
  13. Delshad D., Mostowfizadeh-Ghalamfarsa R., Safaiefarahani B., 2020. Potential host range and the effect of temperature on the pathogenicity of Phytophthora pseudocryptogea and its close relatives. Journal of Plant Pathology 102: 753–763. https://doi.org/10.1007/s42161-020-00501-w DOI: https://doi.org/10.1007/s42161-020-00501-w
  14. Erwin D.C., Ribeiro O.K., 1996. Phytophthora: Diseases Worldwide. St. Paul, Minnesota, USA, APS Press, 408–422 pp.
  15. Eschen R., Douma J.C., Grégoire J.-C., Mayer F., Rigaux L., Potting R.P.J., 2017. A risk categorisation and analysis of the geographic and temporal dynamics of the European import of plants for planting. Forest Invasions 19: 3243–3257. https://doi.org/10.1007/s10530-017-1465-6 DOI: https://doi.org/10.1007/s10530-017-1465-6
  16. EUPHRESCO ‘ID-PHYT-Early detection of Phytophthora in EU and third country nurseries and traded plants,’ (n.d.). Available at: https://drop.euphresco.net/data/d6902388-be48-4b72-ad6e-709ea37f18ea. Accessed October 25, 2023.
  17. Fichtner E.J., Lynch S.C., Rizzo D.M., 2007. Detection, distribution, sporulation, and survival of Phytophthora ramorum in a California redwood-tanoak forest soil. Phytopathology 97: 1366–1375. https://doi.org/10.1094/PHYTO-97-10-1366 DOI: https://doi.org/10.1094/PHYTO-97-10-1366
  18. Forbes H.K., Rizzo D.M., Browne G.T., 2019. Reexamination of Phytophthora populations affecting almond and walnut trees in California. University of California. Available at: https://www.proquest.com/openview/385fe9f7d9b5b5b292c2e8f366b7b1fa/1?pq-origsite=gscholar&cbl=18750&diss=y
  19. Ghelardini L., Pepori A.L., Luchi N., Capretti P., Santini A., 2016. Drivers of emerging fungal diseases of forest trees. Forest Ecology and Management 381: 235–246. https://doi.org/10.1016/j.foreco.2016.09.032 DOI: https://doi.org/10.1016/j.foreco.2016.09.032
  20. Green S., Cooke D.E.L., Dunn M., Barwell L., Purse B., … Marzano M., 2021. Phyto-threats: Addressing threats to OK forests and woodlands from Phytophthora; identifying risks of spread in trade and methods for mitigation. Forests 12: 1617. https://doi.org/10.3390/f12121617 DOI: https://doi.org/10.3390/f12121617
  21. Green S., Marzano M., Frederickson-matika D., Valatin G., Pérez-sierra A., … Thorpe P., 2020. Thapbi final report form 1., 1–28. Available at: https://www.forestresearch.gov.uk/research/global-threats-from-phytophthora-spp-phyto-threats/#:~:text=The multidisciplinary “Phyto-threats”,pathogens in the wider UK.
  22. Hudler G.W., 2013. Phytophthora cactorum. Forest Phytophthoras 3. https://doi.org/10.5399/osu/fp.3.1.3396 DOI: https://doi.org/10.5399/osu/fp.3.1.3396
  23. Hwang S.C., 1978. Biology of Chlamydospores, Sporangia, and Zoospores of Phytophthora cinnamomi in Soil. Phytopathology 68: 726–731. https://doi.org/10.1094/phyto-68-726. DOI: https://doi.org/10.1094/Phyto-68-726
  24. Jung T., Burgess T.I., 2009. Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia: Molecular Phylogeny and Evolution of Fungi 22: 95–110. https://doi.org/10.3767/003158509X442612 DOI: https://doi.org/10.3767/003158509X442612
  25. Jung T., Orlikowski L., Henricot B., Abad-Campos P., Aday A.G., … Peréz-Sierra A., 2016. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology 46: 134–163. https://doi.org/10.1111/efp.12239 DOI: https://doi.org/10.1111/efp.12239
  26. Jung T., Pérez-Sierra A., Durán A., Jung M.H., Balci Y., Scanu B., 2018. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia: Molecular Phylogeny and Evolution of Fungi 40: 182–220. https://doi.org/10.3767/persoonia.2018.40.08 DOI: https://doi.org/10.3767/persoonia.2018.40.08
  27. Liu D.C., Zhao W.X., Xia J.P., Cai S.S., Huai W., … Li B., 2022. First Report of Root Rot Caused by Phytophthora acerina on Metasequoia glyptostroboides in China. Plant Disease 106: 2270. https://doi.org/10.1094/PDIS-12-21-2722-PDN DOI: https://doi.org/10.1094/PDIS-12-21-2722-PDN
  28. Migliorini D., Ghelardini L., Tondini E., Luchi N., Santini A., 2015. The potential of symptomless potted plants for carrying invasive soilborne plant pathogens. Diversity and Distributions 21: 1218–1229. https://doi.org/10.1111/ddi.12347 DOI: https://doi.org/10.1111/ddi.12347
  29. Migliorini D., Khdiar M.Y., Padrón C.R., Vivas M., Barber P.A., … Burgess T.I., 2019. Extending the host range of Phytophthora multivora, a pathogen of woody plants in horticulture, nurseries, urban environments and natural ecosystems. Urban Forestry and Urban Greening 46. https://doi.org/10.1016/j.ufug.2019.126460 DOI: https://doi.org/10.1016/j.ufug.2019.126460
  30. Migliorini D., Luchi N., Pepori A.L., Pecori F., Aglietti C., … Santini A., 2020. Caliciopsis moriondi, a new species for a fungus long confused with the pine pathogen C. pinea. MycoKeys 73: 87–108. https://doi.org/10.3897/MYCOKEYS.73.53028 DOI: https://doi.org/10.3897/mycokeys.73.53028
  31. Moralejo E., Pérez-Sierra A.M., Álvarez L.A., Belbahri L., Lefort F., Descals E., 2009. Multiple alien Phytophthora taxa discovered on diseased ornamental plants in Spain. Plant Pathology 58: 100–110. https://doi.org/10.1111/j.1365-3059.2008.01930.x DOI: https://doi.org/10.1111/j.1365-3059.2008.01930.x
  32. Panth M., Baysal-Gurel F., Avin F.A., Simmons T., 2021. Identification and chemical and biological management of Phytopythium vexans, the causal agent of Phytopythium root and crown rot of woody ornamentals. Plant Disease 105: 1091–1100. https://doi.org/10.1094/PDIS-05-20-0987-RE DOI: https://doi.org/10.1094/PDIS-05-20-0987-RE
  33. Parke J.L., Knaus B.J., Fieland V.J., Lewis C., Grünwald N.J., 2014. Phytophthora community structure analyses in Oregon nurseries inform systems approaches to disease management. Phytopathology 104: 1052–1062. https://doi.org/10.1094/PHYTO-01-14-0014-R DOI: https://doi.org/10.1094/PHYTO-01-14-0014-R
  34. Robideau G.P., De Cock A.W., Coffey M.D., Voglmayr H., Brouwer H., … Lévesque C.A. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources 11(6):1002-1011. https://doi.org/10.1111/j.1755-0998.2011.03041 DOI: https://doi.org/10.1111/j.1755-0998.2011.03041.x
  35. Rooney-Latham S., Blomquist C.L., Swiecki T., Bernhardt E., Frankel S.J., 2015. First detection in the USA: new plant pathogen, Phytophthora tentaculata, in native plant nurseries and restoration sites in California. Native Plants Journal 16: 23-27. https://doi.org/10.3368/npj.16.1.23 DOI: https://doi.org/10.3368/npj.16.1.23
  36. Rooney-Latham S, Blomquist C.L., Kosta K.L., Gou Y.Y., Woods P.W., 2019 .Phytophthora species are common on nursery stock grown for restoration and revegetation purposes in California. Plant Disease 2019 103:448-455. https://doi.org/10.1094/PDIS-01-18-0167-RE. Epub 2019 Jan 10. PMID: 30632470 DOI: https://doi.org/10.1094/PDIS-01-18-0167-RE
  37. Schiffer-Forsyth K., Frederickson Matika D., Hedley P.E., Cock P.J.A., Green S., 2023. Phytophthora in Horticultural Nursery Green Waste—A Risk to Plant Health. Horticulturae 9: 1–12. https://doi.org/10.3390/horticulturae9060616 DOI: https://doi.org/10.3390/horticulturae9060616
  38. Scott P.M., Burgess T.I., Barber P.A., Shearer B.L., Stukely M.J.C., … Jung T., 2009. Phytophthora multivora sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia. Persoonia: Molecular Phylogeny and Evolution of Fungi 22: 1–13. https://doi.org/10.3767/003158509X415450 DOI: https://doi.org/10.3767/003158509X415450
  39. Scott P.M., Jung T., Shearer B.L., Barber P.A., Calver M., Hardy G.E.S.J., 2012. Pathogenicity of Phytophthora multivora to Eucalyptus gomphocephala and Eucalyptus marginata. Forest Pathology 42: 289–298. https://doi.org/10.1111/j.1439-0329.2011.00753.x DOI: https://doi.org/10.1111/j.1439-0329.2011.00753.x
  40. Shishkoff N., 2007. Persistence of Phytophthora ramorum in soil mix and roots of nursery ornamentals. Plant Disease 91: 1245–1249. https://doi.org/10.1094/PDIS-91-10-1245 DOI: https://doi.org/10.1094/PDIS-91-10-1245
  41. Themann K., Werres S., Lüttmann R., Diener H.A., 2002. Observations of Phytophthora spp. in water recirculation systems in commercial hardy ornamental nursery stock. European Journal of Plant Pathology 108: 337–343. https://doi.org/10.1023/A:1015614625414 DOI: https://doi.org/10.1023/A:1015614625414
  42. Vettraino A.M., Morel O., Perlerou C., Robin C., Diamandis S., Vannini A., 2005. Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with Ink Disease and crown decline. European Journal of Plant Pathology 111: 169–180. https://doi.org/10.1007/s10658-004-1882-0 DOI: https://doi.org/10.1007/s10658-004-1882-0
  43. White T.J., Bruns T., Lee S., Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications (Innis M.A., Gelfland D.H., Sninsky J.J., White T.J., ed.), San Diego, CA,USA, Academic Press, 315–322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  44. Yang X., Tyler B.M., Hong C., 2017. An expanded phylogeny for the genus Phytophthora. IMA Fungus 8: 355–384. https://doi.org/10.5598/imafungus.2017.08.02.09 DOI: https://doi.org/10.5598/imafungus.2017.08.02.09