Published 2023-12-30
Keywords
- Podosphaera aphanis,
- biocontrol,
- agronomic practices,
- disease forecasting models,
- natural substances
How to Cite
Copyright (c) 2023 Anna ALDRIGHETTI, Ilaria PERTOT
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Strawberry powdery mildew, caused by Podosphaera aphanis, is an economically important disease for strawberry production. Typical symptoms are white mycelium on all aerial parts of affected plants, with young host tissues being the most susceptible. The pathogen overwinters on infected leaves, either as mycelium or chasmothecia, although the quantitative role of chasmothecia in epidemics are not fully understood. In spring, under favourable conditions, the fungus sporulates, disseminating conidia and causing polycyclic infections. The disease is mainly controlled using synthetic fungicides, but there is increasing interest in sustainable alternatives, including microbial biocontrol agents (e.g., Ampelomyces quisqualis, Bacillus spp., Trichoderma spp.) and substances of plant or animal origin (e.g., Equisetum arvense, orange oil, chitosan, whey). Physical methods, (e.g. UV-C, ozone) are also promising alternatives to fungicides. All of these strategies should be combined with appropriate agronomic practices (e.g., overhead irrigation, canopy management) to create unfavourable environments for the pathogen. However, agronomic practices have never been assessed for P. aphanis. Disease forecasting models and DSSs, though available, are underutilized due to their complexity and lack of validation across locations. This review presents the current state of knowledge on P. aphanis the available methods for control of strawberry powdery mildew, and highlights knowledge gaps relating to this host/pathogen relationship.
Downloads
Metrics
References
- Abanay A., Masmoudi L., Ansari M. El, Gonzalez-Jimenez J., Moreno F. A., 2022. LIDAR-based autonomous navigation method for an agricultural mobile robot in strawberry greenhouse: AgriEco Robot. AIMS Electronics and Electrical Engineering 6(3): 317–328. https://doi.org/10.3934/ELECTRENG.2022019 DOI: https://doi.org/10.3934/electreng.2022019
- Abd AL-Razaq A. H., 2019. Whey applications in plants. Plant Archives 19(1): 45-48.
- Amsalem L., Freeman S., Rav-David D., Nitzani Y., Sztejnberg A., … Elad Y., 2006. Effect of climatic factors on powdery mildew caused by Sphaerotheca macularis f. sp. fragariae on strawberry. European Journal of Plant Pathology 114(3): 283–292. https://doi.org/10.1007/s10658-005-5804-6 DOI: https://doi.org/10.1007/s10658-005-5804-6
- Aranaz I., Alcántara A. R., Civera M. C., Arias C., Elorza B., … Acosta N., 2021. Chitosan: An overview of its properties and applications. Polymers 13(19): 3256. https://doi.org/10.3390/polym13193256 DOI: https://doi.org/10.3390/polym13193256
- Arthur J. C., 1886. Report of the Botanist of the New York Experiment Station, 259–296 pp.
- Asalf B., Gadoury D. M., Tronsmo A. M., Seem R. C., Dobson A., … Stensvand A., 2014. Ontogenic resistance of leaves and fruit, and how leaf folding influences the distribution of powdery mildew on strawberry plants colonized by Podosphaera aphanis. Phytopathology 104(9): 954–963. https://doi.org/10.1094/PHYTO-12-13-0345-R DOI: https://doi.org/10.1094/PHYTO-12-13-0345-R
- Asalf B., Gadoury D. M., Tronsmo A. M., Seem R. C., Cadle-Davidson L., … Stensvand A., 2013. Temperature regulates the initiation of chasmothecia in powdery mildew of strawberry. Phytopathology 103(7): 717–724. DOI: https://doi.org/10.1094/PHYTO-09-12-0252-R
- Asalf B., Onofre R. B., Gadoury D. M., Peres N. A., Stensvand A., 2021. Pulsed water mists for suppression of strawberry powdery mildew. Plant Disease 105(1): 71–77. https://doi.org/10.1094/PDIS-04-20-0735-RE DOI: https://doi.org/10.1094/PDIS-04-20-0735-RE
- Aust H., Hoyningen-Huene, J. V., 1986. Microclimate in relation to epidemics of powdery mildew. Annual Review of Phytopathology 24(1): 491–510. https://doi.org/10.1146/annurev.py.24.090186.002423 DOI: https://doi.org/10.1146/annurev.py.24.090186.002423
- Austin C. N., Wilcox W. F., 2011. Effects of fruit-zone leaf removal, training systems, and irrigation on the development of grapevine powdery mildew. American Journal of Enology and Viticulture 62(2): 193–198. https://doi.org/10.5344/ajev.2010.10084 DOI: https://doi.org/10.5344/ajev.2010.10084
- Ayabe S., Kimura Y., Umei N., Takikawa Y., Kakutani K., … Nonomura T., 2022. Real-time collection of conidia released from living single colonies of Podosphaera aphanis on strawberry leaves under natural conditions with electrostatic techniques. Plants 11(24): 3453. https://doi.org/10.3390/plants11243453 DOI: https://doi.org/10.3390/plants11243453
- Ayres P.G., Woolacott B., 1980. Effects of soil water level on the development of adult plant resistance to powdery mildew in barley. Annals of Applied Biology 94: 255–263. bioRxiv 2021.08.04.455115. https://doi.org/10.1101/2021.08.04.455115 DOI: https://doi.org/10.1111/j.1744-7348.1980.tb03917.x
- Aziz A., Poinssot B., Daire X., Adrian M., Bézier A., … Pugin A., 2003. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions 16(12): 1118-1128. https://doi.org/10.1094/MPMI.2003.16.12.1118 DOI: https://doi.org/10.1094/MPMI.2003.16.12.1118
- Bajpai S., Shukla P. S., Asiedu S., Pruski K., Prithiviraj B., 2019. A biostimulant preparation of brown seaweed Ascophyllum nodosum suppresses powdery mildew of strawberry. The plant pathology journal 35(5): 406. https://doi.org/10.5423/PPJ.OA.03.2019.0066 DOI: https://doi.org/10.5423/PPJ.OA.03.2019.0066
- Balsari P., Oggero G., Cerruto E., Friso D., Guarella P., Raffaelli M., 2008. Comparison among different pesticide application methods in greenhouses in Italy: First results. Acta Horticulturae 801: 661–667. https://doi.org/10.17660/actahortic.2008.801.76 DOI: https://doi.org/10.17660/ActaHortic.2008.801.76
- Barber M.S., Bertram R.E., Ride J.P., 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiological and Molecular Plant Pathology 34(1): 3-12. https://doi.org/10.1016/0885-5765(89)90012-X DOI: https://doi.org/10.1016/0885-5765(89)90012-X
- Bardet A., Vibert J., 2011. L’oïdium du fraisier: Un outil de prévision du risque. Infos Ctifl 276, 38–44.
- Beers E. H., Martinez-Rocha L., Talley R. R., Dunley J. E., 2009. Lethal, sublethal, and behavioral effects of sulfur-containing products in bioassays of three species of orchard mites. Journal of Economic Entomology 102(1): 324–335. https://doi.org/10.1603/029.102.0143 DOI: https://doi.org/10.1603/029.102.0143
- Berrie A., Xu X., 2021. Developing biopesticide-based programmes for managing powdery mildew in protected strawberries in the UK. Crop Protection 149: 105766. https://doi.org/10.1016/j.cropro.2021.105766 DOI: https://doi.org/10.1016/j.cropro.2021.105766
- Bettiol W., 1999. Effectiveness of cow’s milk against zucchini squash powdery mildew (Sphaerotheca fuliginea) in greenhouse conditions. Crop Protection 18(8): 489–492. https://doi.org/10.1016/S0261-2194(99)00046-0 DOI: https://doi.org/10.1016/S0261-2194(99)00046-0
- Bettiol W., Silva H. S. A., Reis R. C., 2008. Effectiveness of whey against zucchini squash and cucumber powdery mildew. Scientia Horticulturae 117(1): 82–84. https://doi.org/10.1016/j.scienta.2008.03.010 DOI: https://doi.org/10.1016/j.scienta.2008.03.010
- Blanco C., de los Santos B., Barrau C., Arroyo F. T., Porras M., Romero F., 2004. Relationship among concentrations of Sphaerotheca macularis conidia in the air, environmental conditions, and the incidence of powdery mildew in strawberry. Plant Disease 88: 878-881. https://doi.org/10.1094/PDIS.2004.88.8.878 DOI: https://doi.org/10.1094/PDIS.2004.88.8.878
- Bondesan D., Rizzi C., Ganarin G., Marchel L., Bertoldi S., 2015. Foliar deposition of electrostatic charged spray applied by a cannon sprayer on high tunnel strawberry. IOBC-WPRS Bulletin 109, 37-40.
- Bouchard J. 2008. Épidémiologie et Evaluation de Systèmes Prévisionnels Comme Outil de Lutte Raisonnée Contre le Blanc (Sphaerotheca Macularis) chez le Fraisier à Jour Neutre et Conventionnel. PhD Thesis, Université Laval, Québec, Canada, 107 pp.
- Bowen P., Menzies J., Ehret D., Samuels L., Glass A. D., 1992. Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science 117(6): 906-912. https://doi.org/10.21273/JASHS.117.6.906 DOI: https://doi.org/10.21273/JASHS.117.6.906
- Braekman P., Foque D., Messens W., van Labeke M. C., Pieters J. G., Nuyttens D., 2010. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes. Pest Management Science 66(2): 203–212. https://doi.org/10.1002/ps.1858 DOI: https://doi.org/10.1002/ps.1858
- Braun U., 1987. A monograph of the Erysiphales (powdery mildews). Beihefte zur Nova Hedwigia 89: 1–700.
- Braun U., Takamatsu S., 2000. Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences: some taxonomic consequences. Schlechtendalia 4: 1-33.
- Braun U., 1982. Taxonomic notes on some powdery mildews. Mycotaxon 15: 138-154.
- Caesar J. C., Clerk G. C., 1985. Germinability of Leveillula taurica (powdery mildew) conidia obtained from water-stressed pepper plants. Canadian Journal of Botany 63(10): 1681-1684. DOI: https://doi.org/10.1139/b85-234
- Caffi T., Rossi V., Carisse O., 2011. Evaluation of a dynamic model for primary infections caused by Plasmopara viticola on grapevine in Quebec. Plant Health Progress 12(1): 22. https://doi.org/10.1094/PHP-2011-0126-01-RS DOI: https://doi.org/10.1094/PHP-2011-0126-01-RS
- Capriotti L., Baraldi E., Mezzetti B., Limera C., Sabbadini S. 2020. Biotechnological approaches: gene overexpression, gene silencing, and genome editing to control fungal and oomycete diseases in grapevine. International Journal of Molecular Sciences 21(16): 5701. https://doi.org/10.3390/ijms21165701 DOI: https://doi.org/10.3390/ijms21165701
- Carisse O., Bouchard J., 2010. Age-related susceptibility of strawberry leaves and berries to infection by Podosphaera aphanis. Crop Protection 29(9): 969–978. https://doi.org/10.1016/j.cropro.2010.03.008 DOI: https://doi.org/10.1016/j.cropro.2010.03.008
- Carisse O., Fall M. L., 2021. Decision trees to forecast risks of strawberry powdery mildew caused by Podosphaera aphanis. Agriculture (Switzerland) 11(1): 1–16. https://doi.org/10.3390/agriculture11010029 DOI: https://doi.org/10.3390/agriculture11010029
- Carisse O., Lefebvre A., Van der Heyden H., Roberge L., Brodeur L., 2013a. Analysis of incidence-severity relationships for strawberry powdery mildew as influenced by cultivar, cultivar type, and production systems. Plant Disease 97(3): 354–362. https://doi.org/10.1094/PDIS-05-12-0508-RE DOI: https://doi.org/10.1094/PDIS-05-12-0508-RE
- Carisse O., Morissette-Thomas V., Van Der Heyden H., 2013b. Lagged association between powdery mildew leaf severity, airborne inoculum, weather, and crop losses in strawberry. Phytopathology 103(8): 811–821. https://doi.org/10.1094/PHYTO-11-12-0300-R DOI: https://doi.org/10.1094/PHYTO-11-12-0300-R
- Castro-Moretti F. R., Gentzel I. N., Mackey D., Alonso A. P., 2020. Metabolomics as an Emerging Tool for the Study of Plant-Pathogen Interactions. Metabolites 10(2): 52. https://doi.org/10.3390/metabo10020052 DOI: https://doi.org/10.3390/metabo10020052
- Cavanagh H. M. A., 2007. Antifungal activity of the volatile phase of essential oils: A brief review. Natural Product Communications 2(12): 1297–1302. https://doi.org/10.1177/1934578x0700201222 DOI: https://doi.org/10.1177/1934578X0700201222
- Cerruto E., Manetto G., Santoro F., Pascuzzi S., 2018. Operator dermal exposure to pesticides in tomato and strawberry greenhouses from hand-held sprayers. Sustainability (Switzerland) 10(7): 1–21. https://doi.org/10.3390/su10072273 DOI: https://doi.org/10.3390/su10072273
- Chakraborty M., Hasanuzzaman M., Rahman M., Khan M. A. R., Bhowmik P., … Islam T., 2020. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture (Switzerland) 10(12): 1–30. https://doi.org/10.3390/agriculture10120624 DOI: https://doi.org/10.3390/agriculture10120624
- Cockerton H. M., Vickerstaff R. J., Karlström A., Wilson F., Sobczyk M., … Harrison R. J. 2018. Identification of powdery mildew resistance QTL in strawberry (Fragaria × ananassa). Theoretical and Applied Genetics 131: 1995-2007. https://doi.org/10.1007/s00122-018-3128-0 DOI: https://doi.org/10.1007/s00122-018-3128-0
- Cook R.T.A., Inman A.J., Billings C., 1997. Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. Mycological Research 101: 975-1002. DOI: https://doi.org/10.1017/S095375629700364X
- Crisp P., Wicks T. J., Lorimer M., Scott E. S., 2006a. An evaluation of biological and abiotic controls for grapevine powdery mildew, 1. Greenhouse studies. Australian Journal of Grape and Wine Research 12(3): 192–202. https://doi.org/10.1111/j.1755-0238.2006.tb00059.x DOI: https://doi.org/10.1111/j.1755-0238.2006.tb00059.x
- Crisp P., Wicks T. J., Troup G., Scott E. S., 2006b. Mode of action of milk and whey in the control of grapevine powdery mildew. Australasian Plant Pathology 35(5): 487–493. https://doi.org/10.1071/AP06052 DOI: https://doi.org/10.1071/AP06052
- De Ville B., 2013. Decision trees. Wiley Interdisciplinary Reviews: Computational Statistics 5(6): 448–455. https://doi.org/10.1002/wics.1278 DOI: https://doi.org/10.1002/wics.1278
- Ctifl, 2023. Présentation du modèle. Accessed September 19, 2023. https://inoki.ctifl.fr/pages/Presentation/Modele.aspx?id=8
- de Borba M. C., Velho A. C., de Freitas M. B., Holvoet M., Maia-Grondard, Stadnik,M. J. 2022. A laminarin-based formulation protects wheat against Zymoseptoria tritici via direct antifungal activity and elicitation of host defense-related genes. Plant Disease 106(5): 1408-1418. https://doi.org/10.1094/PDIS-08-21-1675-RE DOI: https://doi.org/10.1094/PDIS-08-21-1675-RE
- Deliopoulos T., Kettlewell P. S., Hare M. C., 2010. Fungal disease suppression by inorganic salts: A review. Crop Protection 29(10): 1059–1075. https://doi.org/10.1016/j.cropro.2010.05.011 DOI: https://doi.org/10.1016/j.cropro.2010.05.011
- Delorme M. M., Guimarães J. T., Coutinho N. M., Balthazar C. F., Rocha R. S., … Cruz A. G., 2020. Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science & Technology 102: 146-154. https://doi.org/10.1016/j.tifs.2020.06.001 DOI: https://doi.org/10.1016/j.tifs.2020.06.001
- Deresa E. M., Diriba T. F., 2023. Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon 9(3): e13810. https://doi.org/10.1016/j.heliyon.2023.e13810 DOI: https://doi.org/10.1016/j.heliyon.2023.e13810
- Dodgson J. L. A., Liu B., Wileman H. J., Mutasa-Gottgens E. S., Hall A. M., (2021) Development and evaluation of a decision prediction tool for the reduction of fungicide applications for the control of strawberry powdery mildew epidemics. PLoS ONE 1-28. https://doi.org/10.1101/2021.08.04.455115 DOI: https://doi.org/10.1101/2021.08.04.455115
- Dodgson J. L. A., 2007. Epidemiology and Sustainable Control of Podosphaera aphanis Strawberry Powdery Mildew). PhD Thesis, University of Hertfordshire, Hatfield, England, 198 pp.
- Duan W., Peng L., Jiang J., Zhang H., Tong G., 2022. Combined transcriptome and metabolome analysis of strawberry fruits in response to powdery mildew infection. Agronomy Journal 114(2): 1027-1039. https://doi.org/10.1002/agj2.21026 DOI: https://doi.org/10.1002/agj2.21026
- Ebert T. A., Downer R. A., 2006. A different look at experiments on pesticide distribution. Crop Protection 25(4): 299–309. https://doi.org/10.1016/j.cropro.2005.06.002 DOI: https://doi.org/10.1016/j.cropro.2005.06.002
- Eccel E., Fratton S., Ghielmi L., Tizianel A., Shtienberg D., Pertot I., 2010. Application of a non-linear temperature forecast post-processing technique for the optimization of powdery mildew protection on strawberry. Italian Journal of Agrometeorology 2: 5.
- Effah E., Holopainen J. K., McCormick A. C., 2019. Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics 38: 58–63. https://doi.org/10.1016/j.ppees.2019.04.003 DOI: https://doi.org/10.1016/j.ppees.2019.04.003
- EFSA (European Food Safety Authority), 2010. Conclusion on the peer review of the pesticide risk assessment of the active substance bromuconazole. EFSA Journal 8(8): 1–84. https://doi.org/10.2903/j.efsa.2010.1704 DOI: https://doi.org/10.2903/j.efsa.2010.1704
- Elad Y., Messika Y., Brand M., David D. R., Sztejnberg A., 2007. Effect of colored shade nets on pepper powdery mildew (Leveillula taurica). Phytoparasitica 35(3): 285–299. https://doi.org/10.1007/BF02981163 DOI: https://doi.org/10.1007/BF02981163
- Elagamey E., Abdellatef M. A., Haridy M. S., Abd El-aziz E. S. A., 2023. Evaluation of natural products and chemical compounds to improve the control strategy against cucumber powdery mildew. European Journal of Plant Pathology 165(2): 385-400. https://doi.org/10.1007/s10658-022-02612-9 DOI: https://doi.org/10.1007/s10658-022-02612-9
- EIBC, 2012. European Biostimulant Industry Council. Accessed April 25, 2023. https://biostimulants.eu/
- EU Pesticide Database, 2023. Active substances, safeners and synergists. Accessed April 20, 2023. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances
- EU, 2009. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union L 309, 24.11.2009: 1–50.
- EU, 2019. Regulation (EC) No 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Official Journal of the European Union L 170, 25.06.2019: 1–114.
- Falk S. P., Gadoury D. M., Pearson R. C., Seem R. C., 1995. Partial control of grape powdery mildew by the mycoparasite Ampelomyces quisqualis. Plant Disease 79(5): 483-490. DOI: https://doi.org/10.1094/PD-79-0483
- Fall M. L., Carisse O. 2022. Dynamic simulation for predicting warning and action thresholds: A novelty for strawberry powdery mildew management. Agricultural and Forest Meteorology 312: 108711. https://doi.org/10.1016/j.agrformet.2021.108711 DOI: https://doi.org/10.1016/j.agrformet.2021.108711
- Feng J., Cheng, Y., Zheng, C. 2020a. Expression patterns of octoploid strawberry TGA genes reveal a potential role in response to Podosphaera aphanis infection. Plant Biotechnology Reports 14: 55–67. https://doi.org/10.1007/s11816-019-00582-9 DOI: https://doi.org/10.1007/s11816-019-00582-9
- Feng J., Zhang M., Yang K.-N., Zheng, C.-X., 2020b. Salicylic acid-primed defence response in octoploid strawberry ‘Benihoppe’ leaves induces resistance against Podosphaera aphanis through enhanced accumulation of proanthocyanidins and upregulation of pathogenesisrelated genes. BMC Plant Biology 20: 149. https://doi.org/10.1186/ s12870-020-02353-z DOI: https://doi.org/10.1186/s12870-020-02353-z
- Ferrari S., Savatin D. V., Sicilia F., Gramegna G., Cervone F., De Lorenzo G., 2013. Oligogalacturonides: Plant damage-associated molecular patterns and regulators of growth and development. Frontiers in Plant Science 4: 1–9. https://doi.org/10.3389/fpls.2013.00049 DOI: https://doi.org/10.3389/fpls.2013.00049
- Ferraz C. A., Pastorinho M. R., Palmeira-de-Oliveira A., Sousa A. C. A., 2022. Ecotoxicity of plant extracts and essential oils: A review. Environmental Pollution 292: 118319. https://doi.org/10.1016/j.envpol.2021.118319 DOI: https://doi.org/10.1016/j.envpol.2021.118319
- Frac Code List, 2022. Fungal control agents sorted by cross-resistance pattern and mode of action (including coding for FRAC Groups on product labels). Accessed April 20, 2023. https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2022--final.pdf?sfvrsn=b6024e9a_2
- Frem M., Nigro F., Medawar S., Moujabber M. El., 2022. Biological approaches promise innovative and sustainable management of powdery mildew in lebanese squash. Sustainability (Switzerland) 14(5): 2811. https://doi.org/10.3390/su14052811 DOI: https://doi.org/10.3390/su14052811
- Fujiwara K., Fujii T., 2002. Effects of spraying ozonated water on the severity of powdery mildew infection on cucumber leaves. Ozone: Science and Engineering 24(6): 463–469. https://doi.org/10.1080/01919510208901635 DOI: https://doi.org/10.1080/01919510208901635
- Fujiwara K., Fujii T., 2004. Research note: Effects of ozonated water spray droplet size and distance on the dissolved ozone concentration at the spray target. Ozone: Science and Engineering 26(5): 511–516. https://doi.org/10.1080/01919510490507892 DOI: https://doi.org/10.1080/01919510490507892
- Gadoury D. M., Asalf B., Heidenreic M. C., Herrero M. L., Welser M. J., … Stensvand A., 2010. Initiation, development, and survival of cleistothecia of Podosphaera aphanis and their role in the epidemiology of strawberry powdery mildew. Phytopathology 100(3): 246–251. https://doi.org/10.1094/PHYTO-100-3-0246 DOI: https://doi.org/10.1094/PHYTO-100-3-0246
- Gadoury D. M., Pearson R. C., Seem R. C., Henick-Kling T., Creasy L. L., Michaloski A., 1992. Control of fungal diseases of grapevine by short-wave ultraviolet light. Phytopathology 82: 243.
- Gadoury D. M., Stensvand A., Asalf B., Seem R. C., Tronsmo A. M., Bekoscke K., 2013. Strawberry powdery mildew: the where and why of inoculum sources. In Nordic Association of Agricultural Science Conference, Copenaghen, November 2013, 9: 10-11.
- Gent D. H., Nelson M. E., Grove G. G., Mahaffee W. F., Turechek W. W., Woods J. L., 2012. Association of spring pruning practices with severity of powdery mildew and downy mildew on hop. Plant Disease 96(9): 1343–1351. https://doi.org/10.1094/PDIS-01-12-0084-RE DOI: https://doi.org/10.1094/PDIS-01-12-0084-RE
- Gent D. H., Probst C., Nelson M. E., Grove G. G., Massie S. T., Twomey M. C., 2016. Interaction of basal foliage removal and late-season fungicide applications in management of hop powdery mildew. Plant Disease 100(6): 1153–1160. https://doi.org/10.1094/PDIS-10-15-1232-RE DOI: https://doi.org/10.1094/PDIS-10-15-1232-RE
- Gomez A. O., Mattner S. W., Oag D., Nimmo P., Milinkovic M., Villalta O. N., 2017. Protecting fungicide chemistry used in Australian strawberry production for more sustainable control of powdery mildew and leaf blotch. Acta Horticulturae 1156: 735–742. https://doi.org/10.17660/ActaHortic.2017.1156.108 DOI: https://doi.org/10.17660/ActaHortic.2017.1156.108
- Gooding H.J., McNicol R.J., MacIntyre D., 1981. Methods of screening strawberries for resistance to Sphaerotheca macularis and Phytophthora cactorum. Journal of Horticultural Science 56: 239–245. https://doi.org/10.1080/ 00221589.1981.11514995 DOI: https://doi.org/10.1080/00221589.1981.11514995
- Gubler W. D., Rademacher M. R., Vasquez S. J., Thomas, C. S., 1999. Control of powdery mildew using the UC Davis powdery mildew risk index. APS net Feature Online. Accessed June 21, 2023. https://doi.org/10.1094/APSnetFeature-1999-0199 DOI: https://doi.org/10.1094/APSnetFeature-1999-0199
- Ahmed Hashim A. A., 2019. Whey applications in plants. Plant Archives 19(1): 45-48.
- Hamow K. Á., Ambrózy Z., Puskás K., Majláth I., Cséplő M., … Sági L., 2021. Emission of novel volatile biomarkers for wheat powdery mildew. Science of the Total Environment 781: 146767. https://doi.org/10.1016/j.scitotenv.2021.146767 DOI: https://doi.org/10.1016/j.scitotenv.2021.146767
- Harel Y. M., Elad Y., Rav-David D., Borenstein M., Shulchani R., … Graber E. R., 2012. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant and Soil 357(1): 245–257. https://doi.org/10.1007/s11104-012-1129-3 DOI: https://doi.org/10.1007/s11104-012-1129-3
- He H., Zheng L., Li Y., Song W., 2015. Research on the feasibility of spraying micro/nano bubble ozonated water for airborne disease prevention. Ozone: Science & Engineering 37(1): 78-84, https://doi.org/10.1080/01919512.2014.913473 DOI: https://doi.org/10.1080/01919512.2014.913473
- Heimpel G. E., Cock M. J., 2018. Shifting paradigms in the history of classical biological control. BioControl 63: 27-37. https://doi.org/10.1007/s10526-017-9841-9 DOI: https://doi.org/10.1007/s10526-017-9841-9
- Hibben C. R., Taylor M. P., 1975. Ozone and sulphur dioxide effects on the lilac powdery mildew fungus. Environmental Pollution 9(2): 107–114. https://doi.org/10.1016/0013-9327(75)90124-X DOI: https://doi.org/10.1016/0013-9327(75)90124-X
- Hoffman L. E., Gubler, W. D., 2002. Validation of the UC Davis strawberry powdery mildew risk index. In California Strawberry Commision Report 2: 19.
- Homma Y., Arimoto Y., Misato T., 1981. Effect of sodium bicarbonate on each growth stage of cucumber powdery mildew fungus (Sphaerotheca fuliginea) in its life cycle. Journal of Pesticide Science 6(2): 201–209. https://doi.org/10.1584/jpestics.6.201 DOI: https://doi.org/10.1584/jpestics.6.201
- Howard C., Albregts E., 1982. Cleistothecia of Sphaerotheca macularis on strawberry plants in Florida. Plant Disease 66: 261-262. DOI: https://doi.org/10.1094/PD-66-261
- Hu L. B., Li H. B., Sun J. L., Zeng J., 2012. Effect of laminarin on Aspergillus Flavus growth and aflatoxin production. Advanced Materials Research, 343, 1168–1171. DOI: https://doi.org/10.4028/www.scientific.net/AMR.343-344.1168
- Huber D. M., Haneklaus S., 2007. Managing nutrition to control plant disease. Landbauforschung Volkenrode 57(4): 313–322.
- IBMA, 2022. International Biocontrol Manufacturers Association. Bernard Blum Award 2022 Gold Winner is Pronemite by Biobest. Accessed August 28, 2023. https://ibma-global.org/bernard-blum-award/bernard-blum-award-2022-winners
- Isman M. B., 2020. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochemistry Reviews 19: 235–241. https://doi.org/10.1007/s11101-019-09653-9 DOI: https://doi.org/10.1007/s11101-019-09653-9
- ISO 9235, 2021. Aromatic natural raw materials — Vocabulary. Accessed April 19, 2023. https://www.iso.org/obp/ui/#iso:std:iso:9235:ed-3:v1:en
- Iwasaki S., Asano S., Yoshida K., Kitamura S., Taira A., … Nonomura T., 2021. Analysis of conidiogenesis and lifelong conidial production from single conidiophores of Podosphaera aphanis on strawberry leaves using digital microscopic and electrostatic techniques. Australasian Plant Pathology 50(5): 571–587. https://doi.org/10.1007/s13313-021-00794-0 DOI: https://doi.org/10.1007/s13313-021-00794-0
- Janisiewicz W. J., Takeda F., Nichols B., Glenn D. M., Jurick W. M., Camp M. J., 2016. Use of low-dose UV-C irradiation to control powdery mildew caused by Podosphaera aphanis on strawberry plants. Canadian Journal of Plant Pathology 38(4): 430–439. https://doi.org/10.1080/07060661.2016.1263807 DOI: https://doi.org/10.1080/07060661.2016.1263807
- Jarvis W.R., Gubler W.D., Grove G.G., Bélanger R.R., Bushnell W.R., … Carver T.L., 2002. Epidemiology of powdery mildews in agricultural pathosystems. In The Powdery Mildews: A Comprehensive Treatise. (Bélanger R.R., Bushnell W.R., Dik A.J., Carver, T.L.W., ed), APS press, St. Paul, Minnesota, USA, 169–199 pp.
- Jhooty J. S., McKeen W. E., 1965. Studies on powdery mildew of strawberry caused by Sphaerotheca macularis. Phytopathology 55: 281–285.
- Jin X., 2015. Epidemiology and Control of Powdery Mildew (Podosphaera aphanis) on strawberry. PhD Thesis, University of Hertfordshire, Hatfield, UK. 295 pp.
- Jin X., Hall A. M., Huang Y., Fitt B. D. L., 2012. Development and maturation of the chasmothecia of Podospheara aphanis on strawberry. In: Crop Protection in Southern Britain Conference, Peterborough, United Kingdom, 27–28 November 2012. Aspects of Applied Biology 117: 235–240.
- Kanto T., Maekawa K., Aino M., 2007. Suppression of conidial germination and appressorial formation by silicate treatment in powdery mildew of strawberry. Journal of General Plant Pathology 73(1): 1–7. https://doi.org/10.1007/s10327-006-0311-y DOI: https://doi.org/10.1007/s10327-006-0311-y
- Kanto T., Miyoshi A., Ogawa T., Maekawa K., Aino M., 2004. Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. Journal of General Plant Pathology 70(4): 207–211. https://doi.org/10.1007/s10327-004-0117-8 DOI: https://doi.org/10.1007/s10327-004-0117-8
- Kanto T., Miyoshi A., Ogawa T., Maekawa K., Aino, M., 2006. Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. Journal of General Plant Patholology 72: 137–142. https://doi.org/10.1007/s10327-005-0270-8 DOI: https://doi.org/10.1007/s10327-005-0270-8
- Kasiamdari R. S., Nayogyani A., Wahyuni I. N., Arif M. F., Aristya G. R., 2021. Morphological and PCR-based characterisation of Podosphaera aphanis (Wallr.) U. Braun & S. Takamatsu causing powdery mildew disease in strawberry in Java. Archives of Phytopathology and Plant Protection 54(15): 990–1000. https://doi.org/10.1080/03235408.2020.1869396 DOI: https://doi.org/10.1080/03235408.2020.1869396
- Keller M., Rogiers S. Y., Schultz H. R., 2003. Nitrogen and ultraviolet radiation modify grapevines’ susceptibility to powdery mildew. Vitis 42(2): 87–94.
- Kennedy C., Hasing T. N., Peres N. A., Whitaker V. M., 2013. Evaluation of strawberry species and cultivars for powdery mildew resistance in open-field and high tunnel production systems. HortScience 48: 1125–1129. https://doi.org/10.21273/HORTSCI.48.9.1125 DOI: https://doi.org/10.21273/HORTSCI.48.9.1125
- Kennedy C., Osorio L. F., Peres N. A., Whitaker V. M., 2014. Additive genetic effects for resistance to foliar powdery mildew in strawberry revealed through divergent selection. Journal of the American Society for Horticultural Science 139(3): 310–316. https://doi.org/10.21273/JASHS.139.3.310 DOI: https://doi.org/10.21273/JASHS.139.3.310
- Kettlewell P. S., Cook J. W., Parry D. W., 2000. Evidence for an osmotic mechanism in the control of powdery mildew disease of wheat by foliar-applied potassium chloride. European Journal of Plant Pathology 106(3): 297–300. https://doi.org/10.1023/A:1008761202455 DOI: https://doi.org/10.1023/A:1008761202455
- Khan W., Rayirath U. P., Subramanian S., Jithesh M. N., Rayorath P., … Prithiviraj B., 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation 28(4): 386–399. https://doi.org/10.1007/s00344-009-9103-x DOI: https://doi.org/10.1007/s00344-009-9103-x
- Khan M. R., Khan M. W., 1999. Effects of intermittent ozone exposures on powdery mildew of cucumber. Environmental and Experimental Botany 42(3): 163–171. https://doi.org/10.1016/S0098-8472(99)00029-5 DOI: https://doi.org/10.1016/S0098-8472(99)00029-5
- Kirk P. M., Cannon D. F., David J. C. Stalpers J. A., 2001. Ainsworth and Bisby’s Dictionary of Fungi. 9th ed., CABI Bioscience, Wallingford, United Kingdom.
- Köhl J., Kolnaar R., Ravensberg W. J., 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science 10: 1–19. https://doi.org/10.3389/fpls.2019.00845 DOI: https://doi.org/10.3389/fpls.2019.00845
- Lambert L., Laplante G., Carisse O., Vincent C., 2007. Maladies, Ravageurs et Organismes Bénéfiques Chez le Fraisier, le Framboisier et le Bleuetier. Centre de référence en agriculture et agroalimentaire du Québec (CRAAQ), Québec, Canada.
- Latgé J. P., 2007. The cell wall: A carbohydrate armour for the fungal cell. Molecular Microbiology 66(2): 279–290. https://doi.org/10.1111/j.1365-2958.2007.05872.x DOI: https://doi.org/10.1111/j.1365-2958.2007.05872.x
- Lázaro E., Makowski D., Vicent A., 2021. Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Communications Earth and Environment 2(1): 1–10. https://doi.org/10.1038/s43247-021-00291-8 DOI: https://doi.org/10.1038/s43247-021-00291-8
- Ledermann L., Daouda S., Gouttesoulard C., Aarrouf J., Urban, L., 2021. Flashes of UV-C Light Stimulate Defenses of Vitis vinifera L. “Chardonnay” against Erysiphe necator in Greenhouse and Vineyard Conditions. Plant Disease 105(8): 2106–2113. https://doi.org/10.1094/PDIS-10-20-2229-RE DOI: https://doi.org/10.1094/PDIS-10-20-2229-RE
- Legein M., Smets W., Vandenheuvel D., Eilers T., Muyshondt B., … Lebeer S., 2020. Modes of Action of Microbial Biocontrol in the Phyllosphere. Frontiers in Microbiology 11: 1619. https://doi.org/10.3389/fmicb.2020.01619 DOI: https://doi.org/10.3389/fmicb.2020.01619
- Li K., Xing R., Liu S., Li P., 2020. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. Journal of Agricultural and Food Chemistry 68(44): 12203–12211. https://doi.org/10.1021/acs.jafc.0c05316 DOI: https://doi.org/10.1021/acs.jafc.0c05316
- Li Z., Paul R., Ba Tis T., Saville A. C., Hansel J. C., … Wei, Q., 2019. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nature Plants 5(8): 856–866. https://doi.org/10.1038/s41477-019-0476-y DOI: https://doi.org/10.1038/s41477-019-0476-y
- Liyanage A., Royle D.J., 1976. Overwintering of Sphaerotheca humuli, the cause of hop powdery mildew. Annals of Applied Biology 83,381-394. DOI: https://doi.org/10.1111/j.1744-7348.1976.tb01709.x
- Liu J., Wang X., 2021. Plant diseases and pests detection based on deep learning: a review. Plant Methods 17(1): 1–18. https://doi.org/10.1186/s13007-021-00722-9 DOI: https://doi.org/10.1186/s13007-021-00722-9
- Liu Z., Jiao X., Zhu C., Katul G. G., Ma J., Guo, W., 2021. Micro-climatic and crop responses to micro-sprinkler irrigation. Agricultural Water Management 243: 106498. https://doi.org/10.1016/j.agwat.2020.106498 DOI: https://doi.org/10.1016/j.agwat.2020.106498
- Maas J. L., 1998. Infectious Diseases. In Compendium of Strawberry Diseases. 2nd ed, American Phytopathological Society Press, St. Paul, Minnesota, U.S. 16–81 pp. DOI: https://doi.org/10.1094/9780890546178.003
- Marchand P. A., Jonis M., Furet A., Aveline N., Isembert C., … Larrieu J. F., 2014. Évaluation des caractéristiques et de l’intérêt agronomique de préparations simples de plantes, pour des productions fruitières, légumières et viticoles économes en intrants. Innovations Agronomiques 34: 83–89.
- Marei G. I. K., Rasoul M. A. A., Abdelgaleil S. A., 2012. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology 103(1): 56–61. https://doi.org/10.1016/j.pestbp.2012.03.004 DOI: https://doi.org/10.1016/j.pestbp.2012.03.004
- Martínez-Camacho A. P., Cortez-Rocha M. O., Ezquerra-Brauer J. M., Graciano-Verdugo A. Z., Rodriguez-Félix, F., … Plascencia-Jatomea M. J. C. P., 2010. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers 82(2): 305-315. https://doi.org/10.1016/j.carbpol.2010.04.069 DOI: https://doi.org/10.1016/j.carbpol.2010.04.069
- McRae A. G., Taneja J., Yee K., Shi X., Haridas S., … Wildermuth M. C., 2023. Spray‐induced gene silencing to identify powdery mildew gene targets and processes for powdery mildew control. Molecular Plant Pathology 24: 1169–1183. https://doi. org/10.1111/mpp.13361 DOI: https://doi.org/10.1111/mpp.13361
- Melis P., Stoffels K., Vervoort M., Van Delm T., 2017. Integrated approach of powdery mildew control on strawberry cultivar “Elsanta” in Belgium. Acta Horticulturae 1156: 709–714. https://doi.org/10.17660/ActaHortic.2017.1156.104 DOI: https://doi.org/10.17660/ActaHortic.2017.1156.104
- Menegola E., Broccia M. L., Di Renzo F., Giavini E., 2006. Postulated pathogenic pathway in triazole fungicide induced dysmorphogenic effects. Reproductive Toxicology 22(2): 186–195. https://doi.org/10.1016/j.reprotox.2006.04.008 DOI: https://doi.org/10.1016/j.reprotox.2006.04.008
- Meng X., Yang L., Kennedy J. F., Tian S., 2010. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers 81(1): 70–75. https://doi.org/10.1016/j.carbpol.2010.01.057 DOI: https://doi.org/10.1016/j.carbpol.2010.01.057
- Menzel C. M., 2022. A review of powdery mildew in strawberries: the resistance of species, hybrids and cultivars to the pathogen is highly variable within and across studies with no standard method for assessing the disease. Journal of Horticultural Science and Biotechnology 97(3): 273–297. https://doi.org/10.1080/14620316.2021.1985402 DOI: https://doi.org/10.1080/14620316.2021.1985402
- Menzies J., Bowen P., Ehret D., Glass A. D. M., 2019. Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. Journal of the American Society for Horticultural Science 117(6): 902–905. https://doi.org/10.21273/jashs.117.6.902 DOI: https://doi.org/10.21273/JASHS.117.6.902
- Miller T. C., Gubler W. D., Geng S., Rizzo D. M., 2003. Effects of temperature and water vapor pressure on conidial germination and lesion expansion of Sphaerotheca macularis f. sp. fragariae. Plant Disease 87(5): 484–492. https://doi: 10.1094/PDIS.2003.87.5.484. DOI: https://doi.org/10.1094/PDIS.2003.87.5.484
- Moret A., Muñoz Z. G. S., 2009. Control of powdery mildew on cucumber cotyledons by chitosan. Società Italiana di Patologia Vegetale 91(2): 375–380.
- Mostafa Y. S., Hashem M., Alshehri A. M., Alamri S., Eid E. M., … Alrumman S. A., 2021. Effective management of cucumber powdery mildew with essential oils. Agriculture (Switzerland), 11(11). https://doi.org/10.3390/agriculture11111177 DOI: https://doi.org/10.3390/agriculture11111177
- Muñoz-Leoz B., Ruiz-Romera E., Antigüedad I., Garbisu C., 2011. Tebuconazole application decreases soil microbial biomass and activity. Soil Biology and Biochemistry 43(10): 2176–2183. https://doi.org/10.1016/j.soilbio.2011.07.001 DOI: https://doi.org/10.1016/j.soilbio.2011.07.001
- Nakzawa Y., Uchida K., 1998. First record of cleistothecial stage of powdery mildew fungus on strawberry in Japan. Japanese Journal of Phytopathology 64(2): 121–124. https://doi.org/10.3186/jjphytopath.64.121 DOI: https://doi.org/10.3186/jjphytopath.64.121
- Nelson M. D., Gubler W. D., Shaw D. V., 1995. Inheritance of powdery mildew resistance in greenhouse-grown versus field-grown California strawberry progenies. Phytopathology 85(4): 421–424. DOI: https://doi.org/10.1094/Phyto-85-421
- OECD, 2017. Guidance on botanical active substances used in plant protection products. Accessed March 19, 2023. https://read.oecd-ilibrary.org/environment/guidance-document-on-botanical-active-substances-used-in-plant-protection-products_31f295f3-en#page1
- Ouellette S., Goyette M. H., Labbé C., Laur J., Gaudreau L., … Bélanger R. R., 2017. Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Frontiers in Plant Science 8: 1–11. https://doi.org/10.3389/fpls.2017.00949 DOI: https://doi.org/10.3389/fpls.2017.00949
- Palmer M. G., Holmes, G. J., 2021. Fungicide sensitivity in strawberry powdery mildew caused by Podosphaera aphanis in California. Plant Disease 105(9). https://doi.org/10.1094/PDIS-12-20-2604-RE DOI: https://doi.org/10.1094/PDIS-12-20-2604-RE
- Palmer S., Scott E., Stangoulis J., Able A. J., 2006. The effect of foliar-applied Ca and Si on the severity of powdery mildew in two strawberry cultivars. Acta Horticulturae 708: 135–139. https://doi.org/10.17660/actahortic.2006.708.21 DOI: https://doi.org/10.17660/ActaHortic.2006.708.21
- Pate J. S., Radetsky L. C., Nagare R., Rea M. S., 2020. Nighttime application of UV-C to control cucumber powdery mildew. Plant Health Progress 21(1): 40–46. https://doi.org/10.1094/PHP-11-19-0081-RS DOI: https://doi.org/10.1094/PHP-11-19-0081-RS
- Peres N. A., Mertely, J. C., 1969. Powdery Mildew of Strawberries. Edis 2005(3): 2–5. https://doi.org/10.32473/edis-pp129-2005 DOI: https://doi.org/10.32473/edis-pp129-2005
- Pérez-García A., Romero D., De Vicente A., 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22(2): 187–193. DOI: https://doi.org/10.1016/j.copbio.2010.12.003
- Peries O. S., 1962a. Studies on strawberry mildew, caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski: I. Biology of the fungus. Annals of Applied Biology 50: 211–224. DOI: https://doi.org/10.1111/j.1744-7348.1962.tb06004.x
- Peries O. S., 1962b. Studies on strawberry mildew, caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski: II. Host–parasite relationships on foliage of strawberry varieties. Annals of Applied Biology 50: 225–233. DOI: https://doi.org/10.1111/j.1744-7348.1962.tb06005.x
- Pertot I, Fiamingo F., Amsalem L., Maymon M., Freeman S., … March N., 2007. Sensitivity of two Podosphaera aphanis populations to disease control agents. Journal of Plant Pathology 89(1): 85–96.
- Pertot I., Zasso R., Amsalem L., Baldessari M., Angeli G., Elad Y., 2008. Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Protection 27(3): 622–631. https://doi.org/10.1016/j.cropro.2007.09.004 DOI: https://doi.org/10.1016/j.cropro.2007.09.004
- Pijnakker J., Moerkens R., Vangansbeke D., Duarte M., Bellinkx S., … Wäckers F., 2022. Dual protection: A tydeoid mite effectively controls both a problem pest and a key pathogen in tomato. Pest Management Science 78(1): 355–361. https://doi.org/10.1002/ps.6647 DOI: https://doi.org/10.1002/ps.6647
- Prodorutti D., Profaizer D., Ganarin G., Conci S., Pantezzi T., Angeli G., 2019. Experimental trials to control strawberry powdery mildew in Italy. IOBC-WPRS Bulletin 144: 71–73.
- Rea M. S., Bullough J. D., Bierman A. C., 2022. Output reduction over time of germicidal UV-C lamps used for treating agricultural crops. Leukos - Journal of Illuminating Engineering Society of North America 18(4): 438–446. https://doi.org/10.1080/15502724.2021.1921594 DOI: https://doi.org/10.1080/15502724.2021.1921594
- Reuveni M., Reuveni R., 1998. Foliar applications of mono-potassium phosphate fertilizer inhibit powdery mildew development in nectarine trees. Canadian Journal of Plant Pathology 20(3): 253–258. https://doi.org/10.1080/07060669809500391 DOI: https://doi.org/10.1080/07060669809500391
- Reuveni M., Agapov V., Reuveni R., 1995. Suppression of cucumber powdery mildew Sphaerotheca fuliginea by foliar sprays of phoshate and potassium salts. Plant Pathology 44(1): 31–39. https://doi.org/10.1111/j.1365-3059.1995.tb02713.x DOI: https://doi.org/10.1111/j.1365-3059.1995.tb02713.x
- Reuveni M., Sanches E., Barbier M., 2020. Curative and suppressive activities of essential tea tree oil against fungal plant pathogens. Agronomy 10(4): 609. https://doi.org/10.3390/AGRONOMY10040609 DOI: https://doi.org/10.3390/agronomy10040609
- Rimal A., Fletcher S. M., McWatters K. H., Misra S. K., Deodhar S., 2001. Perception of food safety and changes in food consumption habits: A consumer analysis. International Journal of Consumer Studies 25(1): 43–52. https://doi.org/10.1111/j.1470-6431.2001.00162.x DOI: https://doi.org/10.1111/j.1470-6431.2001.00162.x
- Rjiba-Touati K., Ayed-Boussema I., Hamdi H., Abid S., 2023. Genotoxic damage and apoptosis in rat glioma (F98) cell line following exposure to bromuconazole. NeuroToxicology 94: 108–116. https://doi.org/10.1016/j.neuro.2022.11.006 DOI: https://doi.org/10.1016/j.neuro.2022.11.006
- Roberti R., Flori P., Brunelli A., Bini, F., 2002. Compatibility of the antagonistic fungi Ampelomyces quisqualis and Beauveria bassiana with fungicides. In: Atti, Giornate fitopatologiche, 7-11 Aprile, 2002, Baselga di Piné, Trento, Italy, 541-546.
- Rodrigues F. A., Duarte H. S. S., Domiciano G. P., Souza C. A., Korndörfer G.H., 2009. Foliar application of potassium silicate reduces the intensity of soybean rust. Australasian Plant Pathology 38: 366–372. https://doi.org/10.1071/AP09010 DOI: https://doi.org/10.1071/AP09010
- Rossi F. G., Asalf B., Grieu C., Onofre R. B., Peres N. A., … Stensvand A., 2020. Effect of water stress on reproduction and colonization of Podosphaera aphanis of strawberry. Plant Disease 104(11): 2973–2978. https://doi.org/10.1094/PDIS-10-19-2172-RE DOI: https://doi.org/10.1094/PDIS-10-19-2172-RE
- Rusch H., Laurence J. A., 1993. Interactive effects of ozone and powdery mildew on pea seedlings. Phytopathology 83(11): 1258–1263. DOI: https://doi.org/10.1094/Phyto-83-1258
- Salmon E. S., 1900. The strawberry mildew. J. R. Horticultural Society 25:132–138.
- Sánchez-Hermosilla J., Rincón V.J., Páez F., Agüera F., Carvajal F. 2011. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops. Pest Management Science 67: 942–947. https://doi.org/10.1002/ps.2135 DOI: https://doi.org/10.1002/ps.2135
- Sánchez-Hermosilla J., Rincón V. J., Páez F., Fernández M., 2012. Comparative spray deposits by manually pulled trolley sprayer and a spray gun in greenhouse tomato crops. Crop Protection 31(1): 119–124. https://doi.org/10.1016/j.cropro.2011.10.007 DOI: https://doi.org/10.1016/j.cropro.2011.10.007
- SANCO, 2012. European Commission Health & consumer protection Directorate-General 2012. Guidance document on botanical active substances used in plant protection products 11470/2012-rev8.
- SANTE, 2021. European Commission Health & consumer protection Directorate-General 2021. Review report 12354/2015– rev3.
- Schmidt H. P., Kammann C., Hagemann N., Leifeld J., Bucheli T. D., … Cayuela, M. L., 2021. Biochar in agriculture – A systematic review of 26 global meta-analyses. GCB Bioenergy 13(11): 1708–1730. https://doi.org/10.1111/gcbb.12889 DOI: https://doi.org/10.1111/gcbb.12889
- Seal P., Das P., Biswas A. K., 2018. Versatile potentiality of silicon in mitigation of biotic and abiotic stresses in plants: a review. American Journal of Plant Sciences 09(07): 1433–1454. https://doi.org/10.4236/ajps.2018.97105 DOI: https://doi.org/10.4236/ajps.2018.97105
- Sargent D.J., Buti M., Šurbanovski N., Brurberg M.B., Alsheikh M., … Davik J., 2019. Identification of QLTs for powdery mildew (Podosphaera aphanis; syn. Sphaerotheca macularis f. sp. fragariae) susceptibility in cultivated strawberry (Fragaria ×ananassa). PLoS One 14: e0222829. https://doi.org/10.1371/journal.pone.0222829 DOI: https://doi.org/10.1371/journal.pone.0222829
- Sharratt W. J., Peterson E., Calbert H.E., 1959. Whey as a source of nutrients and its effect on the soil. Journal of Dairy Science 42(7): 1126–1131. DOI: https://doi.org/10.3168/jds.S0022-0302(59)90705-2
- Shin J., Chang Y. K., Heung B., Nguyen-Quang T., Price G. W., Al-Mallahi A., 2020. Effect of directional augmentation using supervised machine learning technologies: A case study of strawberry powdery mildew detection. Biosystems Engineering 194: 49–60. https://doi.org/10.1016/j.biosystemseng.2020.03.016 DOI: https://doi.org/10.1016/j.biosystemseng.2020.03.016
- Shin J., Chang Y. K., Heung B., Nguyen-Quang T., Price G. W., Al-Mallahi A., 2021. A deep learning approach for RGB image-based powdery mildew disease detection on strawberry leaves. Computers and Electronics in Agriculture 183: 106042. https://doi.org/10.1016/j.compag.2021.106042 DOI: https://doi.org/10.1016/j.compag.2021.106042
- Silva R. R., da Silva A. C., Rodella R. A., Marques M. O., Zanuncio A. … Furtado E. L., 2020. Limonene, a chemical compound related to the resistance of Eucalyptus species to Austropuccinia psidii. Plant Disease 104(2): 414–422. https://doi.org/10.1094/PDIS-05-19-1002-RE DOI: https://doi.org/10.1094/PDIS-05-19-1002-RE
- Sprague R. H. and Carlson E. D., 1982. Building Effective Decision Support Systems, Prentice-Hall, Inc., Englewood Clifts, N.J. 329 pp.
- Sombardier A., Savary S., Blancard D., Jolivet, J., Willocquet L. (2009). Effects of leaf surface and temperature on monocyclic processes in Podosphaera aphanis, causing powdery mildew of strawberry. Canadian Journal of Plant Pathology 31(4): 439–448. https://doi.org/10.1080/07060660909507618 DOI: https://doi.org/10.1080/07060660909507618
- Sombardier A., Dufour M. C., Blancard D., Corio-Costet M. F., 2010. Sensitivity of Podosphaera aphanis isolates to dmi fungicides: Distribution and reduced cross-sensitivity. Pest Management Science 66(1): 35–43. https://doi.org/10.1002/ps.1827 DOI: https://doi.org/10.1002/ps.1827
- Sønsteby A., Woznicki T. L., Heide O. M., 2021. Effects of runner removal and partial defoliation on the growth and yield performance of ‘Favori’ everbearing strawberry plants. Horticulturae 7(8). https://doi.org/10.3390/horticulturae7080215 DOI: https://doi.org/10.3390/horticulturae7080215
- Stephenson W. M., 1966. The effect of hydrolysed seaweed on certain plant pests and diseases. In: Proceedings of the Fifth International Seaweed Symposium, Halifax, August 1965, 405–415. DOI: https://doi.org/10.1016/B978-0-08-011841-3.50064-1
- Stenberg J. A., Sundh I., Becher P. G., Björkman C., Dubey M., … Viketoft, M., 2021. When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science 94(3): 665–676. https://doi.org/10.1007/S10340-021-01354-7/FIGURES/2 DOI: https://doi.org/10.1007/s10340-021-01354-7
- Sundheim L., 1982. Control of cucumber powdery mildew by the hyperparasite Ampelomyces quisqualis and fungicides. Plant Pathology 31(3): 209–214. DOI: https://doi.org/10.1111/j.1365-3059.1982.tb01270.x
- Suthaparan A., Stensvand A., Solhaug K. A., Torre S., Mortensen L. … Gislerød H. R., 2012. Suppression of powdery mildew (Podosphaera pannosa) in greenhouse roses by brief exposure to supplemental UV-B radiation. Plant Disease 96(11): 1653–1660. https://doi.org/10.1094/PDIS-01-12-0094-RE DOI: https://doi.org/10.1094/PDIS-01-12-0094-RE
- Sylla J., Alsanius B. W., Krüger E., Becker D., Wohanka W., 2013. Invitro compatibility of microbial agents for simultaneous application to control strawberry powdery mildew (Podosphaera aphanis). Crop Protection 51: 40–47. https://doi.org/10.1016/j.cropro.2013.04.011 DOI: https://doi.org/10.1016/j.cropro.2013.04.011
- Tapia R.R., Barbey C.R., Chandra S., Folta K.M., Whitaker V.M., Lee S. 2021. Evolution of the MLO gene families in octoploid strawberry (Fragaria ×ananassa) and progenitor diploid species identified potential genes for strawberry powdery mildew resistance. Horticulture Research 8: 153. https://doi.org/10.1038/s41438- 021-00587-y DOI: https://doi.org/10.1038/s41438-021-00587-y
- Tavares W. R., Barreto M. D. C., Seca A. M., 2021. Aqueous and ethanolic plant extracts as bio-insecticides—Establishing a bridge between raw scientific data and practical reality. Plants 10(5): 920. DOI: https://doi.org/10.3390/plants10050920
- Tziros G. T., Samaras A., Karaoglanidis G. S., 2021. Laminarin induces defense responses and efficiently controls olive leaf spot disease in olive. Molecules 26(4): 1043. https://doi.org/10.3390/molecules26041043 DOI: https://doi.org/10.3390/molecules26041043
- Tzortzakis N., Chrysargyris A. 2017. Postharvest ozone application for the preservation of fruits and vegetables. Food Reviews International 33(3): 270–315. https://doi.org/10.1080/87559129.2016.1175015 DOI: https://doi.org/10.1080/87559129.2016.1175015
- van Aubel G., Buonatesta R., Van Cutsem P., 2014. COS-OGA: A novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew. Crop Protection 65: 129–137. https://doi.org/10.1016/j.cropro.2014.07.015 DOI: https://doi.org/10.1016/j.cropro.2014.07.015
- Van Delm T., Melis P., Stoffels K., Baets W., 2014. Control of powdery mildew by UV-C treatments in commercial strawberry production. Acta Horticulturae 1049: 679–684. https://doi.org/10.17660/ActaHortic.2014.1049.105 DOI: https://doi.org/10.17660/ActaHortic.2014.1049.105
- Van der Heyden H., Lefebvre M., Roberge L., Brodeur L., Carisse O., 2014. Spatial pattern of strawberry powdery mildew (Podosphaera aphanis) and airborne inoculum. Plant Disease 98(1): 43–54. https://doi.org/10.1094/PDIS-10-12-0946-RE DOI: https://doi.org/10.1094/PDIS-10-12-0946-RE
- Van Maanen A., Xu X. M., 2003. Modelling plant disease epidemics. European Journal of Plant Pathology 109(7): 669–682. https://doi.org/10.1023/A:1026018005613 DOI: https://doi.org/10.1023/A:1026018005613
- Vinale F., Sivasithamparam K., Ghisalberti E. L., Marra R., Woo S. L., Lorito M., 2008. Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry 40(1): 1–10. DOI: https://doi.org/10.1016/j.soilbio.2007.07.002
- Wan D.Y., Guo Y., Cheng Y., Hu Y., Xiao S., … Wen Y.Q., 2020. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Horticulture Research 7: 116. https://doi.org/ 10.1038/s41438-020-0339-8 DOI: https://doi.org/10.1038/s41438-020-0339-8
- Wang M., Gao L., Dong S., Sun Y., Shen Q., Guo, S., 2017. Role of silicon on plant–pathogen interactions. Frontiers in Plant Science 8: 701. https://doi.org/10.3389/fpls.2017.00701 DOI: https://doi.org/10.3389/fpls.2017.00701
- Wink M., 1988. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theoretical and Applied Genetics 75: 225–233. DOI: https://doi.org/10.1007/BF00303957
- Willocquet L., Berud F., Raoux L., Clerjeau M., 1998. Effects of wind, relative humidity, leaf movement and colony age on dispersal of conidia of Uncinula necator, causal agent of grape powdery mildew. Plant Pathology 47(3): 234–242. https://doi.org/10.1046/j.1365-3059.1998.00242.x DOI: https://doi.org/10.1046/j.1365-3059.1998.00242.x
- Willocquet L., Sombardier A., Blancard D., Jolivet J., Savary S., 2008. Spore dispersal and disease gradients in strawberry powdery mildew. Canadian Journal of Plant Pathology 30(3): 434–441. https://doi.org/10.1080/07060660809507541 DOI: https://doi.org/10.1080/07060660809507541
- Wulf F., Podhorna J., Rybak M., Büttner C., Bandte M., 2023. Studies on the potential of the basic substance chitosan in managing Podosphaera pannosa on cutting roses and Erysiphe polygoni on French hydrangea. Journal of Plant Diseases and Protection 1–8. https://doi.org/10.1007/s41348-023-00714-y DOI: https://doi.org/10.1007/s41348-023-00714-y
- Xiao C. L., Chandler C. K., Price J. F., Duval J. R., Mertely J. C., Legard D. E., 2001. Comparison of epidemics of botrytis fruit rot and powdery mildew of strawberry in large plastic tunnel and field production systems. Plant Disease 85(8): 901–909. https://doi.org/10.1094/PDIS.2001.85.8.901 DOI: https://doi.org/10.1094/PDIS.2001.85.8.901
- Xing K., Zhu X., Peng X., Qin S., 2015. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development 35(2): 569–588. https://doi.org/10.1007/s13593-014-0252-3 DOI: https://doi.org/10.1007/s13593-014-0252-3
- Xu X., Robinson J., Else M. A., 2013. Effects of nitrogen input and deficit irrigation within the commercial acceptable range on susceptibility of strawberry leaves to powdery mildew. European Journal of Plant Pathology 135(4): 695–701. https://doi.org/10.1007/s10658-012-0106-2 DOI: https://doi.org/10.1007/s10658-012-0106-2
- Yeul V. S., Rayalu S. S., 2013. Unprecedented chitin and chitosan: a chemical overview. Journal of Polymers and the Environment 21(2): 606–614. https://doi.org/10.1007/s10924-012-0458-x DOI: https://doi.org/10.1007/s10924-012-0458-x
- Yin W., Wang X., Liu H., Wang Y., van Nocker S. … Wang X., 2022. Overexpression of VqWRKY31 enhances powdery mildew resistance in grapevine by promoting salicylic acid signalling and specific metabolite synthesis. Horticulture Research 9: uhab064. https://doi.org/10.1093/hr/uhab064 DOI: https://doi.org/10.1093/hr/uhab064
- Zhang P., Zhu Y., Zhou, S., 2021. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection. BMC Plant Biology 21(1): 1–13. https://doi.org/10.1186/s12870-020-02797-3 DOI: https://doi.org/10.1186/s12870-020-02797-3
- Zhang X., Wu M., Yao H., Yang Y., Cui M., … Xiang H., 2016. Pesticide poisoning and neurobehavioral function among farm workers in Jiangsu, People’s Republic of China. Cortex 74: 396–404. https://doi.org/10.1016/j.cortex.2015.09.006 DOI: https://doi.org/10.1016/j.cortex.2015.09.006
- Ziv O., Zitter T. A., 1992. Bicarbonates to control cucurbit disease. Plant Disease 76: 513–517. DOI: https://doi.org/10.1094/PD-76-0513
- Zotti M., Dos Santos E. A., Cagliari D., Christiaens O., Taning C. N. T., Smagghe G., 2018. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science 74(6): 1239–1250. https://doi.org/10.1002/ps.4813 DOI: https://doi.org/10.1002/ps.4813