Vol. 62 No. 3 (2023)
Articles

Epidemiology and control of strawberry powdery mildew: a review

Anna ALDRIGHETTI
Centre Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige
Ilaria PERTOT
Centre Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige

Published 2023-12-30

Keywords

  • Podosphaera aphanis,
  • biocontrol,
  • agronomic practices,
  • disease forecasting models,
  • natural substances

How to Cite

[1]
A. ALDRIGHETTI and I. PERTOT, “Epidemiology and control of strawberry powdery mildew: a review”, Phytopathol. Mediterr., vol. 62, no. 3, pp. 427–453, Dec. 2023.

Abstract

Strawberry powdery mildew, caused by Podosphaera aphanis, is an economically important disease for strawberry production. Typical symptoms are white mycelium on all aerial parts of affected plants, with young host tissues being the most susceptible. The pathogen overwinters on infected leaves, either as mycelium or chasmothecia, although the quantitative role of chasmothecia in epidemics are not fully understood. In spring, under favourable conditions, the fungus sporulates, disseminating conidia and causing polycyclic infections. The disease is mainly controlled using synthetic fungicides, but there is increasing interest in sustainable alternatives, including microbial biocontrol agents (e.g., Ampelomyces quisqualis, Bacillus spp., Trichoderma spp.) and substances of plant or animal origin (e.g., Equisetum arvense, orange oil, chitosan, whey). Physical methods, (e.g. UV-C, ozone) are also promising alternatives to fungicides. All of these strategies should be combined with appropriate agronomic practices (e.g., overhead irrigation, canopy management) to create unfavourable environments for the pathogen. However, agronomic practices have never been assessed for P. aphanis. Disease forecasting models and DSSs, though available, are underutilized due to their complexity and lack of validation across locations. This review presents the current state of knowledge on P. aphanis the available methods for control of strawberry powdery mildew, and highlights knowledge gaps relating to this host/pathogen relationship.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Abanay A., Masmoudi L., Ansari M. El, Gonzalez-Jimenez J., Moreno F. A., 2022. LIDAR-based autonomous navigation method for an agricultural mobile robot in strawberry greenhouse: AgriEco Robot. AIMS Electronics and Electrical Engineering 6(3): 317–328. https://doi.org/10.3934/ELECTRENG.2022019 DOI: https://doi.org/10.3934/electreng.2022019
  2. Abd AL-Razaq A. H., 2019. Whey applications in plants. Plant Archives 19(1): 45-48.
  3. Amsalem L., Freeman S., Rav-David D., Nitzani Y., Sztejnberg A., … Elad Y., 2006. Effect of climatic factors on powdery mildew caused by Sphaerotheca macularis f. sp. fragariae on strawberry. European Journal of Plant Pathology 114(3): 283–292. https://doi.org/10.1007/s10658-005-5804-6 DOI: https://doi.org/10.1007/s10658-005-5804-6
  4. Aranaz I., Alcántara A. R., Civera M. C., Arias C., Elorza B., … Acosta N., 2021. Chitosan: An overview of its properties and applications. Polymers 13(19): 3256. https://doi.org/10.3390/polym13193256 DOI: https://doi.org/10.3390/polym13193256
  5. Arthur J. C., 1886. Report of the Botanist of the New York Experiment Station, 259–296 pp.
  6. Asalf B., Gadoury D. M., Tronsmo A. M., Seem R. C., Dobson A., … Stensvand A., 2014. Ontogenic resistance of leaves and fruit, and how leaf folding influences the distribution of powdery mildew on strawberry plants colonized by Podosphaera aphanis. Phytopathology 104(9): 954–963. https://doi.org/10.1094/PHYTO-12-13-0345-R DOI: https://doi.org/10.1094/PHYTO-12-13-0345-R
  7. Asalf B., Gadoury D. M., Tronsmo A. M., Seem R. C., Cadle-Davidson L., … Stensvand A., 2013. Temperature regulates the initiation of chasmothecia in powdery mildew of strawberry. Phytopathology 103(7): 717–724. DOI: https://doi.org/10.1094/PHYTO-09-12-0252-R
  8. Asalf B., Onofre R. B., Gadoury D. M., Peres N. A., Stensvand A., 2021. Pulsed water mists for suppression of strawberry powdery mildew. Plant Disease 105(1): 71–77. https://doi.org/10.1094/PDIS-04-20-0735-RE DOI: https://doi.org/10.1094/PDIS-04-20-0735-RE
  9. Aust H., Hoyningen-Huene, J. V., 1986. Microclimate in relation to epidemics of powdery mildew. Annual Review of Phytopathology 24(1): 491–510. https://doi.org/10.1146/annurev.py.24.090186.002423 DOI: https://doi.org/10.1146/annurev.py.24.090186.002423
  10. Austin C. N., Wilcox W. F., 2011. Effects of fruit-zone leaf removal, training systems, and irrigation on the development of grapevine powdery mildew. American Journal of Enology and Viticulture 62(2): 193–198. https://doi.org/10.5344/ajev.2010.10084 DOI: https://doi.org/10.5344/ajev.2010.10084
  11. Ayabe S., Kimura Y., Umei N., Takikawa Y., Kakutani K., … Nonomura T., 2022. Real-time collection of conidia released from living single colonies of Podosphaera aphanis on strawberry leaves under natural conditions with electrostatic techniques. Plants 11(24): 3453. https://doi.org/10.3390/plants11243453 DOI: https://doi.org/10.3390/plants11243453
  12. Ayres P.G., Woolacott B., 1980. Effects of soil water level on the development of adult plant resistance to powdery mildew in barley. Annals of Applied Biology 94: 255–263. bioRxiv 2021.08.04.455115. https://doi.org/10.1101/2021.08.04.455115 DOI: https://doi.org/10.1111/j.1744-7348.1980.tb03917.x
  13. Aziz A., Poinssot B., Daire X., Adrian M., Bézier A., … Pugin A., 2003. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions 16(12): 1118-1128. https://doi.org/10.1094/MPMI.2003.16.12.1118 DOI: https://doi.org/10.1094/MPMI.2003.16.12.1118
  14. Bajpai S., Shukla P. S., Asiedu S., Pruski K., Prithiviraj B., 2019. A biostimulant preparation of brown seaweed Ascophyllum nodosum suppresses powdery mildew of strawberry. The plant pathology journal 35(5): 406. https://doi.org/10.5423/PPJ.OA.03.2019.0066 DOI: https://doi.org/10.5423/PPJ.OA.03.2019.0066
  15. Balsari P., Oggero G., Cerruto E., Friso D., Guarella P., Raffaelli M., 2008. Comparison among different pesticide application methods in greenhouses in Italy: First results. Acta Horticulturae 801: 661–667. https://doi.org/10.17660/actahortic.2008.801.76 DOI: https://doi.org/10.17660/ActaHortic.2008.801.76
  16. Barber M.S., Bertram R.E., Ride J.P., 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiological and Molecular Plant Pathology 34(1): 3-12. https://doi.org/10.1016/0885-5765(89)90012-X DOI: https://doi.org/10.1016/0885-5765(89)90012-X
  17. Bardet A., Vibert J., 2011. L’oïdium du fraisier: Un outil de prévision du risque. Infos Ctifl 276, 38–44.
  18. Beers E. H., Martinez-Rocha L., Talley R. R., Dunley J. E., 2009. Lethal, sublethal, and behavioral effects of sulfur-containing products in bioassays of three species of orchard mites. Journal of Economic Entomology 102(1): 324–335. https://doi.org/10.1603/029.102.0143 DOI: https://doi.org/10.1603/029.102.0143
  19. Berrie A., Xu X., 2021. Developing biopesticide-based programmes for managing powdery mildew in protected strawberries in the UK. Crop Protection 149: 105766. https://doi.org/10.1016/j.cropro.2021.105766 DOI: https://doi.org/10.1016/j.cropro.2021.105766
  20. Bettiol W., 1999. Effectiveness of cow’s milk against zucchini squash powdery mildew (Sphaerotheca fuliginea) in greenhouse conditions. Crop Protection 18(8): 489–492. https://doi.org/10.1016/S0261-2194(99)00046-0 DOI: https://doi.org/10.1016/S0261-2194(99)00046-0
  21. Bettiol W., Silva H. S. A., Reis R. C., 2008. Effectiveness of whey against zucchini squash and cucumber powdery mildew. Scientia Horticulturae 117(1): 82–84. https://doi.org/10.1016/j.scienta.2008.03.010 DOI: https://doi.org/10.1016/j.scienta.2008.03.010
  22. Blanco C., de los Santos B., Barrau C., Arroyo F. T., Porras M., Romero F., 2004. Relationship among concentrations of Sphaerotheca macularis conidia in the air, environmental conditions, and the incidence of powdery mildew in strawberry. Plant Disease 88: 878-881. https://doi.org/10.1094/PDIS.2004.88.8.878 DOI: https://doi.org/10.1094/PDIS.2004.88.8.878
  23. Bondesan D., Rizzi C., Ganarin G., Marchel L., Bertoldi S., 2015. Foliar deposition of electrostatic charged spray applied by a cannon sprayer on high tunnel strawberry. IOBC-WPRS Bulletin 109, 37-40.
  24. Bouchard J. 2008. Épidémiologie et Evaluation de Systèmes Prévisionnels Comme Outil de Lutte Raisonnée Contre le Blanc (Sphaerotheca Macularis) chez le Fraisier à Jour Neutre et Conventionnel. PhD Thesis, Université Laval, Québec, Canada, 107 pp.
  25. Bowen P., Menzies J., Ehret D., Samuels L., Glass A. D., 1992. Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science 117(6): 906-912. https://doi.org/10.21273/JASHS.117.6.906 DOI: https://doi.org/10.21273/JASHS.117.6.906
  26. Braekman P., Foque D., Messens W., van Labeke M. C., Pieters J. G., Nuyttens D., 2010. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes. Pest Management Science 66(2): 203–212. https://doi.org/10.1002/ps.1858 DOI: https://doi.org/10.1002/ps.1858
  27. Braun U., 1987. A monograph of the Erysiphales (powdery mildews). Beihefte zur Nova Hedwigia 89: 1–700.
  28. Braun U., Takamatsu S., 2000. Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences: some taxonomic consequences. Schlechtendalia 4: 1-33.
  29. Braun U., 1982. Taxonomic notes on some powdery mildews. Mycotaxon 15: 138-154.
  30. Caesar J. C., Clerk G. C., 1985. Germinability of Leveillula taurica (powdery mildew) conidia obtained from water-stressed pepper plants. Canadian Journal of Botany 63(10): 1681-1684. DOI: https://doi.org/10.1139/b85-234
  31. Caffi T., Rossi V., Carisse O., 2011. Evaluation of a dynamic model for primary infections caused by Plasmopara viticola on grapevine in Quebec. Plant Health Progress 12(1): 22. https://doi.org/10.1094/PHP-2011-0126-01-RS DOI: https://doi.org/10.1094/PHP-2011-0126-01-RS
  32. Capriotti L., Baraldi E., Mezzetti B., Limera C., Sabbadini S. 2020. Biotechnological approaches: gene overexpression, gene silencing, and genome editing to control fungal and oomycete diseases in grapevine. International Journal of Molecular Sciences 21(16): 5701. https://doi.org/10.3390/ijms21165701 DOI: https://doi.org/10.3390/ijms21165701
  33. Carisse O., Bouchard J., 2010. Age-related susceptibility of strawberry leaves and berries to infection by Podosphaera aphanis. Crop Protection 29(9): 969–978. https://doi.org/10.1016/j.cropro.2010.03.008 DOI: https://doi.org/10.1016/j.cropro.2010.03.008
  34. Carisse O., Fall M. L., 2021. Decision trees to forecast risks of strawberry powdery mildew caused by Podosphaera aphanis. Agriculture (Switzerland) 11(1): 1–16. https://doi.org/10.3390/agriculture11010029 DOI: https://doi.org/10.3390/agriculture11010029
  35. Carisse O., Lefebvre A., Van der Heyden H., Roberge L., Brodeur L., 2013a. Analysis of incidence-severity relationships for strawberry powdery mildew as influenced by cultivar, cultivar type, and production systems. Plant Disease 97(3): 354–362. https://doi.org/10.1094/PDIS-05-12-0508-RE DOI: https://doi.org/10.1094/PDIS-05-12-0508-RE
  36. Carisse O., Morissette-Thomas V., Van Der Heyden H., 2013b. Lagged association between powdery mildew leaf severity, airborne inoculum, weather, and crop losses in strawberry. Phytopathology 103(8): 811–821. https://doi.org/10.1094/PHYTO-11-12-0300-R DOI: https://doi.org/10.1094/PHYTO-11-12-0300-R
  37. Castro-Moretti F. R., Gentzel I. N., Mackey D., Alonso A. P., 2020. Metabolomics as an Emerging Tool for the Study of Plant-Pathogen Interactions. Metabolites 10(2): 52. https://doi.org/10.3390/metabo10020052 DOI: https://doi.org/10.3390/metabo10020052
  38. Cavanagh H. M. A., 2007. Antifungal activity of the volatile phase of essential oils: A brief review. Natural Product Communications 2(12): 1297–1302. https://doi.org/10.1177/1934578x0700201222 DOI: https://doi.org/10.1177/1934578X0700201222
  39. Cerruto E., Manetto G., Santoro F., Pascuzzi S., 2018. Operator dermal exposure to pesticides in tomato and strawberry greenhouses from hand-held sprayers. Sustainability (Switzerland) 10(7): 1–21. https://doi.org/10.3390/su10072273 DOI: https://doi.org/10.3390/su10072273
  40. Chakraborty M., Hasanuzzaman M., Rahman M., Khan M. A. R., Bhowmik P., … Islam T., 2020. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture (Switzerland) 10(12): 1–30. https://doi.org/10.3390/agriculture10120624 DOI: https://doi.org/10.3390/agriculture10120624
  41. Cockerton H. M., Vickerstaff R. J., Karlström A., Wilson F., Sobczyk M., … Harrison R. J. 2018. Identification of powdery mildew resistance QTL in strawberry (Fragaria × ananassa). Theoretical and Applied Genetics 131: 1995-2007. https://doi.org/10.1007/s00122-018-3128-0 DOI: https://doi.org/10.1007/s00122-018-3128-0
  42. Cook R.T.A., Inman A.J., Billings C., 1997. Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. Mycological Research 101: 975-1002. DOI: https://doi.org/10.1017/S095375629700364X
  43. Crisp P., Wicks T. J., Lorimer M., Scott E. S., 2006a. An evaluation of biological and abiotic controls for grapevine powdery mildew, 1. Greenhouse studies. Australian Journal of Grape and Wine Research 12(3): 192–202. https://doi.org/10.1111/j.1755-0238.2006.tb00059.x DOI: https://doi.org/10.1111/j.1755-0238.2006.tb00059.x
  44. Crisp P., Wicks T. J., Troup G., Scott E. S., 2006b. Mode of action of milk and whey in the control of grapevine powdery mildew. Australasian Plant Pathology 35(5): 487–493. https://doi.org/10.1071/AP06052 DOI: https://doi.org/10.1071/AP06052
  45. De Ville B., 2013. Decision trees. Wiley Interdisciplinary Reviews: Computational Statistics 5(6): 448–455. https://doi.org/10.1002/wics.1278 DOI: https://doi.org/10.1002/wics.1278
  46. Ctifl, 2023. Présentation du modèle. Accessed September 19, 2023. https://inoki.ctifl.fr/pages/Presentation/Modele.aspx?id=8
  47. de Borba M. C., Velho A. C., de Freitas M. B., Holvoet M., Maia-Grondard, Stadnik,M. J. 2022. A laminarin-based formulation protects wheat against Zymoseptoria tritici via direct antifungal activity and elicitation of host defense-related genes. Plant Disease 106(5): 1408-1418. https://doi.org/10.1094/PDIS-08-21-1675-RE DOI: https://doi.org/10.1094/PDIS-08-21-1675-RE
  48. Deliopoulos T., Kettlewell P. S., Hare M. C., 2010. Fungal disease suppression by inorganic salts: A review. Crop Protection 29(10): 1059–1075. https://doi.org/10.1016/j.cropro.2010.05.011 DOI: https://doi.org/10.1016/j.cropro.2010.05.011
  49. Delorme M. M., Guimarães J. T., Coutinho N. M., Balthazar C. F., Rocha R. S., … Cruz A. G., 2020. Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science & Technology 102: 146-154. https://doi.org/10.1016/j.tifs.2020.06.001 DOI: https://doi.org/10.1016/j.tifs.2020.06.001
  50. Deresa E. M., Diriba T. F., 2023. Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon 9(3): e13810. https://doi.org/10.1016/j.heliyon.2023.e13810 DOI: https://doi.org/10.1016/j.heliyon.2023.e13810
  51. Dodgson J. L. A., Liu B., Wileman H. J., Mutasa-Gottgens E. S., Hall A. M., (2021) Development and evaluation of a decision prediction tool for the reduction of fungicide applications for the control of strawberry powdery mildew epidemics. PLoS ONE 1-28. https://doi.org/10.1101/2021.08.04.455115 DOI: https://doi.org/10.1101/2021.08.04.455115
  52. Dodgson J. L. A., 2007. Epidemiology and Sustainable Control of Podosphaera aphanis Strawberry Powdery Mildew). PhD Thesis, University of Hertfordshire, Hatfield, England, 198 pp.
  53. Duan W., Peng L., Jiang J., Zhang H., Tong G., 2022. Combined transcriptome and metabolome analysis of strawberry fruits in response to powdery mildew infection. Agronomy Journal 114(2): 1027-1039. https://doi.org/10.1002/agj2.21026 DOI: https://doi.org/10.1002/agj2.21026
  54. Ebert T. A., Downer R. A., 2006. A different look at experiments on pesticide distribution. Crop Protection 25(4): 299–309. https://doi.org/10.1016/j.cropro.2005.06.002 DOI: https://doi.org/10.1016/j.cropro.2005.06.002
  55. Eccel E., Fratton S., Ghielmi L., Tizianel A., Shtienberg D., Pertot I., 2010. Application of a non-linear temperature forecast post-processing technique for the optimization of powdery mildew protection on strawberry. Italian Journal of Agrometeorology 2: 5.
  56. Effah E., Holopainen J. K., McCormick A. C., 2019. Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics 38: 58–63. https://doi.org/10.1016/j.ppees.2019.04.003 DOI: https://doi.org/10.1016/j.ppees.2019.04.003
  57. EFSA (European Food Safety Authority), 2010. Conclusion on the peer review of the pesticide risk assessment of the active substance bromuconazole. EFSA Journal 8(8): 1–84. https://doi.org/10.2903/j.efsa.2010.1704 DOI: https://doi.org/10.2903/j.efsa.2010.1704
  58. Elad Y., Messika Y., Brand M., David D. R., Sztejnberg A., 2007. Effect of colored shade nets on pepper powdery mildew (Leveillula taurica). Phytoparasitica 35(3): 285–299. https://doi.org/10.1007/BF02981163 DOI: https://doi.org/10.1007/BF02981163
  59. Elagamey E., Abdellatef M. A., Haridy M. S., Abd El-aziz E. S. A., 2023. Evaluation of natural products and chemical compounds to improve the control strategy against cucumber powdery mildew. European Journal of Plant Pathology 165(2): 385-400. https://doi.org/10.1007/s10658-022-02612-9 DOI: https://doi.org/10.1007/s10658-022-02612-9
  60. EIBC, 2012. European Biostimulant Industry Council. Accessed April 25, 2023. https://biostimulants.eu/
  61. EU Pesticide Database, 2023. Active substances, safeners and synergists. Accessed April 20, 2023. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances
  62. EU, 2009. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union L 309, 24.11.2009: 1–50.
  63. EU, 2019. Regulation (EC) No 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Official Journal of the European Union L 170, 25.06.2019: 1–114.
  64. Falk S. P., Gadoury D. M., Pearson R. C., Seem R. C., 1995. Partial control of grape powdery mildew by the mycoparasite Ampelomyces quisqualis. Plant Disease 79(5): 483-490. DOI: https://doi.org/10.1094/PD-79-0483
  65. Fall M. L., Carisse O. 2022. Dynamic simulation for predicting warning and action thresholds: A novelty for strawberry powdery mildew management. Agricultural and Forest Meteorology 312: 108711. https://doi.org/10.1016/j.agrformet.2021.108711 DOI: https://doi.org/10.1016/j.agrformet.2021.108711
  66. Feng J., Cheng, Y., Zheng, C. 2020a. Expression patterns of octoploid strawberry TGA genes reveal a potential role in response to Podosphaera aphanis infection. Plant Biotechnology Reports 14: 55–67. https://doi.org/10.1007/s11816-019-00582-9 DOI: https://doi.org/10.1007/s11816-019-00582-9
  67. Feng J., Zhang M., Yang K.-N., Zheng, C.-X., 2020b. Salicylic acid-primed defence response in octoploid strawberry ‘Benihoppe’ leaves induces resistance against Podosphaera aphanis through enhanced accumulation of proanthocyanidins and upregulation of pathogenesisrelated genes. BMC Plant Biology 20: 149. https://doi.org/10.1186/ s12870-020-02353-z DOI: https://doi.org/10.1186/s12870-020-02353-z
  68. Ferrari S., Savatin D. V., Sicilia F., Gramegna G., Cervone F., De Lorenzo G., 2013. Oligogalacturonides: Plant damage-associated molecular patterns and regulators of growth and development. Frontiers in Plant Science 4: 1–9. https://doi.org/10.3389/fpls.2013.00049 DOI: https://doi.org/10.3389/fpls.2013.00049
  69. Ferraz C. A., Pastorinho M. R., Palmeira-de-Oliveira A., Sousa A. C. A., 2022. Ecotoxicity of plant extracts and essential oils: A review. Environmental Pollution 292: 118319. https://doi.org/10.1016/j.envpol.2021.118319 DOI: https://doi.org/10.1016/j.envpol.2021.118319
  70. Frac Code List, 2022. Fungal control agents sorted by cross-resistance pattern and mode of action (including coding for FRAC Groups on product labels). Accessed April 20, 2023. https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2022--final.pdf?sfvrsn=b6024e9a_2
  71. Frem M., Nigro F., Medawar S., Moujabber M. El., 2022. Biological approaches promise innovative and sustainable management of powdery mildew in lebanese squash. Sustainability (Switzerland) 14(5): 2811. https://doi.org/10.3390/su14052811 DOI: https://doi.org/10.3390/su14052811
  72. Fujiwara K., Fujii T., 2002. Effects of spraying ozonated water on the severity of powdery mildew infection on cucumber leaves. Ozone: Science and Engineering 24(6): 463–469. https://doi.org/10.1080/01919510208901635 DOI: https://doi.org/10.1080/01919510208901635
  73. Fujiwara K., Fujii T., 2004. Research note: Effects of ozonated water spray droplet size and distance on the dissolved ozone concentration at the spray target. Ozone: Science and Engineering 26(5): 511–516. https://doi.org/10.1080/01919510490507892 DOI: https://doi.org/10.1080/01919510490507892
  74. Gadoury D. M., Asalf B., Heidenreic M. C., Herrero M. L., Welser M. J., … Stensvand A., 2010. Initiation, development, and survival of cleistothecia of Podosphaera aphanis and their role in the epidemiology of strawberry powdery mildew. Phytopathology 100(3): 246–251. https://doi.org/10.1094/PHYTO-100-3-0246 DOI: https://doi.org/10.1094/PHYTO-100-3-0246
  75. Gadoury D. M., Pearson R. C., Seem R. C., Henick-Kling T., Creasy L. L., Michaloski A., 1992. Control of fungal diseases of grapevine by short-wave ultraviolet light. Phytopathology 82: 243.
  76. Gadoury D. M., Stensvand A., Asalf B., Seem R. C., Tronsmo A. M., Bekoscke K., 2013. Strawberry powdery mildew: the where and why of inoculum sources. In Nordic Association of Agricultural Science Conference, Copenaghen, November 2013, 9: 10-11.
  77. Gent D. H., Nelson M. E., Grove G. G., Mahaffee W. F., Turechek W. W., Woods J. L., 2012. Association of spring pruning practices with severity of powdery mildew and downy mildew on hop. Plant Disease 96(9): 1343–1351. https://doi.org/10.1094/PDIS-01-12-0084-RE DOI: https://doi.org/10.1094/PDIS-01-12-0084-RE
  78. Gent D. H., Probst C., Nelson M. E., Grove G. G., Massie S. T., Twomey M. C., 2016. Interaction of basal foliage removal and late-season fungicide applications in management of hop powdery mildew. Plant Disease 100(6): 1153–1160. https://doi.org/10.1094/PDIS-10-15-1232-RE DOI: https://doi.org/10.1094/PDIS-10-15-1232-RE
  79. Gomez A. O., Mattner S. W., Oag D., Nimmo P., Milinkovic M., Villalta O. N., 2017. Protecting fungicide chemistry used in Australian strawberry production for more sustainable control of powdery mildew and leaf blotch. Acta Horticulturae 1156: 735–742. https://doi.org/10.17660/ActaHortic.2017.1156.108 DOI: https://doi.org/10.17660/ActaHortic.2017.1156.108
  80. Gooding H.J., McNicol R.J., MacIntyre D., 1981. Methods of screening strawberries for resistance to Sphaerotheca macularis and Phytophthora cactorum. Journal of Horticultural Science 56: 239–245. https://doi.org/10.1080/ 00221589.1981.11514995 DOI: https://doi.org/10.1080/00221589.1981.11514995
  81. Gubler W. D., Rademacher M. R., Vasquez S. J., Thomas, C. S., 1999. Control of powdery mildew using the UC Davis powdery mildew risk index. APS net Feature Online. Accessed June 21, 2023. https://doi.org/10.1094/APSnetFeature-1999-0199 DOI: https://doi.org/10.1094/APSnetFeature-1999-0199
  82. Ahmed Hashim A. A., 2019. Whey applications in plants. Plant Archives 19(1): 45-48.
  83. Hamow K. Á., Ambrózy Z., Puskás K., Majláth I., Cséplő M., … Sági L., 2021. Emission of novel volatile biomarkers for wheat powdery mildew. Science of the Total Environment 781: 146767. https://doi.org/10.1016/j.scitotenv.2021.146767 DOI: https://doi.org/10.1016/j.scitotenv.2021.146767
  84. Harel Y. M., Elad Y., Rav-David D., Borenstein M., Shulchani R., … Graber E. R., 2012. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant and Soil 357(1): 245–257. https://doi.org/10.1007/s11104-012-1129-3 DOI: https://doi.org/10.1007/s11104-012-1129-3
  85. He H., Zheng L., Li Y., Song W., 2015. Research on the feasibility of spraying micro/nano bubble ozonated water for airborne disease prevention. Ozone: Science & Engineering 37(1): 78-84, https://doi.org/10.1080/01919512.2014.913473 DOI: https://doi.org/10.1080/01919512.2014.913473
  86. Heimpel G. E., Cock M. J., 2018. Shifting paradigms in the history of classical biological control. BioControl 63: 27-37. https://doi.org/10.1007/s10526-017-9841-9 DOI: https://doi.org/10.1007/s10526-017-9841-9
  87. Hibben C. R., Taylor M. P., 1975. Ozone and sulphur dioxide effects on the lilac powdery mildew fungus. Environmental Pollution 9(2): 107–114. https://doi.org/10.1016/0013-9327(75)90124-X DOI: https://doi.org/10.1016/0013-9327(75)90124-X
  88. Hoffman L. E., Gubler, W. D., 2002. Validation of the UC Davis strawberry powdery mildew risk index. In California Strawberry Commision Report 2: 19.
  89. Homma Y., Arimoto Y., Misato T., 1981. Effect of sodium bicarbonate on each growth stage of cucumber powdery mildew fungus (Sphaerotheca fuliginea) in its life cycle. Journal of Pesticide Science 6(2): 201–209. https://doi.org/10.1584/jpestics.6.201 DOI: https://doi.org/10.1584/jpestics.6.201
  90. Howard C., Albregts E., 1982. Cleistothecia of Sphaerotheca macularis on strawberry plants in Florida. Plant Disease 66: 261-262. DOI: https://doi.org/10.1094/PD-66-261
  91. Hu L. B., Li H. B., Sun J. L., Zeng J., 2012. Effect of laminarin on Aspergillus Flavus growth and aflatoxin production. Advanced Materials Research, 343, 1168–1171. DOI: https://doi.org/10.4028/www.scientific.net/AMR.343-344.1168
  92. Huber D. M., Haneklaus S., 2007. Managing nutrition to control plant disease. Landbauforschung Volkenrode 57(4): 313–322.
  93. IBMA, 2022. International Biocontrol Manufacturers Association. Bernard Blum Award 2022 Gold Winner is Pronemite by Biobest. Accessed August 28, 2023. https://ibma-global.org/bernard-blum-award/bernard-blum-award-2022-winners
  94. Isman M. B., 2020. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochemistry Reviews 19: 235–241. https://doi.org/10.1007/s11101-019-09653-9 DOI: https://doi.org/10.1007/s11101-019-09653-9
  95. ISO 9235, 2021. Aromatic natural raw materials — Vocabulary. Accessed April 19, 2023. https://www.iso.org/obp/ui/#iso:std:iso:9235:ed-3:v1:en
  96. Iwasaki S., Asano S., Yoshida K., Kitamura S., Taira A., … Nonomura T., 2021. Analysis of conidiogenesis and lifelong conidial production from single conidiophores of Podosphaera aphanis on strawberry leaves using digital microscopic and electrostatic techniques. Australasian Plant Pathology 50(5): 571–587. https://doi.org/10.1007/s13313-021-00794-0 DOI: https://doi.org/10.1007/s13313-021-00794-0
  97. Janisiewicz W. J., Takeda F., Nichols B., Glenn D. M., Jurick W. M., Camp M. J., 2016. Use of low-dose UV-C irradiation to control powdery mildew caused by Podosphaera aphanis on strawberry plants. Canadian Journal of Plant Pathology 38(4): 430–439. https://doi.org/10.1080/07060661.2016.1263807 DOI: https://doi.org/10.1080/07060661.2016.1263807
  98. Jarvis W.R., Gubler W.D., Grove G.G., Bélanger R.R., Bushnell W.R., … Carver T.L., 2002. Epidemiology of powdery mildews in agricultural pathosystems. In The Powdery Mildews: A Comprehensive Treatise. (Bélanger R.R., Bushnell W.R., Dik A.J., Carver, T.L.W., ed), APS press, St. Paul, Minnesota, USA, 169–199 pp.
  99. Jhooty J. S., McKeen W. E., 1965. Studies on powdery mildew of strawberry caused by Sphaerotheca macularis. Phytopathology 55: 281–285.
  100. Jin X., 2015. Epidemiology and Control of Powdery Mildew (Podosphaera aphanis) on strawberry. PhD Thesis, University of Hertfordshire, Hatfield, UK. 295 pp.
  101. Jin X., Hall A. M., Huang Y., Fitt B. D. L., 2012. Development and maturation of the chasmothecia of Podospheara aphanis on strawberry. In: Crop Protection in Southern Britain Conference, Peterborough, United Kingdom, 27–28 November 2012. Aspects of Applied Biology 117: 235–240.
  102. Kanto T., Maekawa K., Aino M., 2007. Suppression of conidial germination and appressorial formation by silicate treatment in powdery mildew of strawberry. Journal of General Plant Pathology 73(1): 1–7. https://doi.org/10.1007/s10327-006-0311-y DOI: https://doi.org/10.1007/s10327-006-0311-y
  103. Kanto T., Miyoshi A., Ogawa T., Maekawa K., Aino M., 2004. Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. Journal of General Plant Pathology 70(4): 207–211. https://doi.org/10.1007/s10327-004-0117-8 DOI: https://doi.org/10.1007/s10327-004-0117-8
  104. Kanto T., Miyoshi A., Ogawa T., Maekawa K., Aino, M., 2006. Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. Journal of General Plant Patholology 72: 137–142. https://doi.org/10.1007/s10327-005-0270-8 DOI: https://doi.org/10.1007/s10327-005-0270-8
  105. Kasiamdari R. S., Nayogyani A., Wahyuni I. N., Arif M. F., Aristya G. R., 2021. Morphological and PCR-based characterisation of Podosphaera aphanis (Wallr.) U. Braun & S. Takamatsu causing powdery mildew disease in strawberry in Java. Archives of Phytopathology and Plant Protection 54(15): 990–1000. https://doi.org/10.1080/03235408.2020.1869396 DOI: https://doi.org/10.1080/03235408.2020.1869396
  106. Keller M., Rogiers S. Y., Schultz H. R., 2003. Nitrogen and ultraviolet radiation modify grapevines’ susceptibility to powdery mildew. Vitis 42(2): 87–94.
  107. Kennedy C., Hasing T. N., Peres N. A., Whitaker V. M., 2013. Evaluation of strawberry species and cultivars for powdery mildew resistance in open-field and high tunnel production systems. HortScience 48: 1125–1129. https://doi.org/10.21273/HORTSCI.48.9.1125 DOI: https://doi.org/10.21273/HORTSCI.48.9.1125
  108. Kennedy C., Osorio L. F., Peres N. A., Whitaker V. M., 2014. Additive genetic effects for resistance to foliar powdery mildew in strawberry revealed through divergent selection. Journal of the American Society for Horticultural Science 139(3): 310–316. https://doi.org/10.21273/JASHS.139.3.310 DOI: https://doi.org/10.21273/JASHS.139.3.310
  109. Kettlewell P. S., Cook J. W., Parry D. W., 2000. Evidence for an osmotic mechanism in the control of powdery mildew disease of wheat by foliar-applied potassium chloride. European Journal of Plant Pathology 106(3): 297–300. https://doi.org/10.1023/A:1008761202455 DOI: https://doi.org/10.1023/A:1008761202455
  110. Khan W., Rayirath U. P., Subramanian S., Jithesh M. N., Rayorath P., … Prithiviraj B., 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation 28(4): 386–399. https://doi.org/10.1007/s00344-009-9103-x DOI: https://doi.org/10.1007/s00344-009-9103-x
  111. Khan M. R., Khan M. W., 1999. Effects of intermittent ozone exposures on powdery mildew of cucumber. Environmental and Experimental Botany 42(3): 163–171. https://doi.org/10.1016/S0098-8472(99)00029-5 DOI: https://doi.org/10.1016/S0098-8472(99)00029-5
  112. Kirk P. M., Cannon D. F., David J. C. Stalpers J. A., 2001. Ainsworth and Bisby’s Dictionary of Fungi. 9th ed., CABI Bioscience, Wallingford, United Kingdom.
  113. Köhl J., Kolnaar R., Ravensberg W. J., 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science 10: 1–19. https://doi.org/10.3389/fpls.2019.00845 DOI: https://doi.org/10.3389/fpls.2019.00845
  114. Lambert L., Laplante G., Carisse O., Vincent C., 2007. Maladies, Ravageurs et Organismes Bénéfiques Chez le Fraisier, le Framboisier et le Bleuetier. Centre de référence en agriculture et agroalimentaire du Québec (CRAAQ), Québec, Canada.
  115. Latgé J. P., 2007. The cell wall: A carbohydrate armour for the fungal cell. Molecular Microbiology 66(2): 279–290. https://doi.org/10.1111/j.1365-2958.2007.05872.x DOI: https://doi.org/10.1111/j.1365-2958.2007.05872.x
  116. Lázaro E., Makowski D., Vicent A., 2021. Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Communications Earth and Environment 2(1): 1–10. https://doi.org/10.1038/s43247-021-00291-8 DOI: https://doi.org/10.1038/s43247-021-00291-8
  117. Ledermann L., Daouda S., Gouttesoulard C., Aarrouf J., Urban, L., 2021. Flashes of UV-C Light Stimulate Defenses of Vitis vinifera L. “Chardonnay” against Erysiphe necator in Greenhouse and Vineyard Conditions. Plant Disease 105(8): 2106–2113. https://doi.org/10.1094/PDIS-10-20-2229-RE DOI: https://doi.org/10.1094/PDIS-10-20-2229-RE
  118. Legein M., Smets W., Vandenheuvel D., Eilers T., Muyshondt B., … Lebeer S., 2020. Modes of Action of Microbial Biocontrol in the Phyllosphere. Frontiers in Microbiology 11: 1619. https://doi.org/10.3389/fmicb.2020.01619 DOI: https://doi.org/10.3389/fmicb.2020.01619
  119. Li K., Xing R., Liu S., Li P., 2020. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. Journal of Agricultural and Food Chemistry 68(44): 12203–12211. https://doi.org/10.1021/acs.jafc.0c05316 DOI: https://doi.org/10.1021/acs.jafc.0c05316
  120. Li Z., Paul R., Ba Tis T., Saville A. C., Hansel J. C., … Wei, Q., 2019. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nature Plants 5(8): 856–866. https://doi.org/10.1038/s41477-019-0476-y DOI: https://doi.org/10.1038/s41477-019-0476-y
  121. Liyanage A., Royle D.J., 1976. Overwintering of Sphaerotheca humuli, the cause of hop powdery mildew. Annals of Applied Biology 83,381-394. DOI: https://doi.org/10.1111/j.1744-7348.1976.tb01709.x
  122. Liu J., Wang X., 2021. Plant diseases and pests detection based on deep learning: a review. Plant Methods 17(1): 1–18. https://doi.org/10.1186/s13007-021-00722-9 DOI: https://doi.org/10.1186/s13007-021-00722-9
  123. Liu Z., Jiao X., Zhu C., Katul G. G., Ma J., Guo, W., 2021. Micro-climatic and crop responses to micro-sprinkler irrigation. Agricultural Water Management 243: 106498. https://doi.org/10.1016/j.agwat.2020.106498 DOI: https://doi.org/10.1016/j.agwat.2020.106498
  124. Maas J. L., 1998. Infectious Diseases. In Compendium of Strawberry Diseases. 2nd ed, American Phytopathological Society Press, St. Paul, Minnesota, U.S. 16–81 pp. DOI: https://doi.org/10.1094/9780890546178.003
  125. Marchand P. A., Jonis M., Furet A., Aveline N., Isembert C., … Larrieu J. F., 2014. Évaluation des caractéristiques et de l’intérêt agronomique de préparations simples de plantes, pour des productions fruitières, légumières et viticoles économes en intrants. Innovations Agronomiques 34: 83–89.
  126. Marei G. I. K., Rasoul M. A. A., Abdelgaleil S. A., 2012. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochemistry and Physiology 103(1): 56–61. https://doi.org/10.1016/j.pestbp.2012.03.004 DOI: https://doi.org/10.1016/j.pestbp.2012.03.004
  127. Martínez-Camacho A. P., Cortez-Rocha M. O., Ezquerra-Brauer J. M., Graciano-Verdugo A. Z., Rodriguez-Félix, F., … Plascencia-Jatomea M. J. C. P., 2010. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers 82(2): 305-315. https://doi.org/10.1016/j.carbpol.2010.04.069 DOI: https://doi.org/10.1016/j.carbpol.2010.04.069
  128. McRae A. G., Taneja J., Yee K., Shi X., Haridas S., … Wildermuth M. C., 2023. Spray‐induced gene silencing to identify powdery mildew gene targets and processes for powdery mildew control. Molecular Plant Pathology 24: 1169–1183. https://doi. org/10.1111/mpp.13361 DOI: https://doi.org/10.1111/mpp.13361
  129. Melis P., Stoffels K., Vervoort M., Van Delm T., 2017. Integrated approach of powdery mildew control on strawberry cultivar “Elsanta” in Belgium. Acta Horticulturae 1156: 709–714. https://doi.org/10.17660/ActaHortic.2017.1156.104 DOI: https://doi.org/10.17660/ActaHortic.2017.1156.104
  130. Menegola E., Broccia M. L., Di Renzo F., Giavini E., 2006. Postulated pathogenic pathway in triazole fungicide induced dysmorphogenic effects. Reproductive Toxicology 22(2): 186–195. https://doi.org/10.1016/j.reprotox.2006.04.008 DOI: https://doi.org/10.1016/j.reprotox.2006.04.008
  131. Meng X., Yang L., Kennedy J. F., Tian S., 2010. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers 81(1): 70–75. https://doi.org/10.1016/j.carbpol.2010.01.057 DOI: https://doi.org/10.1016/j.carbpol.2010.01.057
  132. Menzel C. M., 2022. A review of powdery mildew in strawberries: the resistance of species, hybrids and cultivars to the pathogen is highly variable within and across studies with no standard method for assessing the disease. Journal of Horticultural Science and Biotechnology 97(3): 273–297. https://doi.org/10.1080/14620316.2021.1985402 DOI: https://doi.org/10.1080/14620316.2021.1985402
  133. Menzies J., Bowen P., Ehret D., Glass A. D. M., 2019. Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. Journal of the American Society for Horticultural Science 117(6): 902–905. https://doi.org/10.21273/jashs.117.6.902 DOI: https://doi.org/10.21273/JASHS.117.6.902
  134. Miller T. C., Gubler W. D., Geng S., Rizzo D. M., 2003. Effects of temperature and water vapor pressure on conidial germination and lesion expansion of Sphaerotheca macularis f. sp. fragariae. Plant Disease 87(5): 484–492. https://doi: 10.1094/PDIS.2003.87.5.484. DOI: https://doi.org/10.1094/PDIS.2003.87.5.484
  135. Moret A., Muñoz Z. G. S., 2009. Control of powdery mildew on cucumber cotyledons by chitosan. Società Italiana di Patologia Vegetale 91(2): 375–380.
  136. Mostafa Y. S., Hashem M., Alshehri A. M., Alamri S., Eid E. M., … Alrumman S. A., 2021. Effective management of cucumber powdery mildew with essential oils. Agriculture (Switzerland), 11(11). https://doi.org/10.3390/agriculture11111177 DOI: https://doi.org/10.3390/agriculture11111177
  137. Muñoz-Leoz B., Ruiz-Romera E., Antigüedad I., Garbisu C., 2011. Tebuconazole application decreases soil microbial biomass and activity. Soil Biology and Biochemistry 43(10): 2176–2183. https://doi.org/10.1016/j.soilbio.2011.07.001 DOI: https://doi.org/10.1016/j.soilbio.2011.07.001
  138. Nakzawa Y., Uchida K., 1998. First record of cleistothecial stage of powdery mildew fungus on strawberry in Japan. Japanese Journal of Phytopathology 64(2): 121–124. https://doi.org/10.3186/jjphytopath.64.121 DOI: https://doi.org/10.3186/jjphytopath.64.121
  139. Nelson M. D., Gubler W. D., Shaw D. V., 1995. Inheritance of powdery mildew resistance in greenhouse-grown versus field-grown California strawberry progenies. Phytopathology 85(4): 421–424. DOI: https://doi.org/10.1094/Phyto-85-421
  140. OECD, 2017. Guidance on botanical active substances used in plant protection products. Accessed March 19, 2023. https://read.oecd-ilibrary.org/environment/guidance-document-on-botanical-active-substances-used-in-plant-protection-products_31f295f3-en#page1
  141. Ouellette S., Goyette M. H., Labbé C., Laur J., Gaudreau L., … Bélanger R. R., 2017. Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Frontiers in Plant Science 8: 1–11. https://doi.org/10.3389/fpls.2017.00949 DOI: https://doi.org/10.3389/fpls.2017.00949
  142. Palmer M. G., Holmes, G. J., 2021. Fungicide sensitivity in strawberry powdery mildew caused by Podosphaera aphanis in California. Plant Disease 105(9). https://doi.org/10.1094/PDIS-12-20-2604-RE DOI: https://doi.org/10.1094/PDIS-12-20-2604-RE
  143. Palmer S., Scott E., Stangoulis J., Able A. J., 2006. The effect of foliar-applied Ca and Si on the severity of powdery mildew in two strawberry cultivars. Acta Horticulturae 708: 135–139. https://doi.org/10.17660/actahortic.2006.708.21 DOI: https://doi.org/10.17660/ActaHortic.2006.708.21
  144. Pate J. S., Radetsky L. C., Nagare R., Rea M. S., 2020. Nighttime application of UV-C to control cucumber powdery mildew. Plant Health Progress 21(1): 40–46. https://doi.org/10.1094/PHP-11-19-0081-RS DOI: https://doi.org/10.1094/PHP-11-19-0081-RS
  145. Peres N. A., Mertely, J. C., 1969. Powdery Mildew of Strawberries. Edis 2005(3): 2–5. https://doi.org/10.32473/edis-pp129-2005 DOI: https://doi.org/10.32473/edis-pp129-2005
  146. Pérez-García A., Romero D., De Vicente A., 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22(2): 187–193. DOI: https://doi.org/10.1016/j.copbio.2010.12.003
  147. Peries O. S., 1962a. Studies on strawberry mildew, caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski: I. Biology of the fungus. Annals of Applied Biology 50: 211–224. DOI: https://doi.org/10.1111/j.1744-7348.1962.tb06004.x
  148. Peries O. S., 1962b. Studies on strawberry mildew, caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski: II. Host–parasite relationships on foliage of strawberry varieties. Annals of Applied Biology 50: 225–233. DOI: https://doi.org/10.1111/j.1744-7348.1962.tb06005.x
  149. Pertot I, Fiamingo F., Amsalem L., Maymon M., Freeman S., … March N., 2007. Sensitivity of two Podosphaera aphanis populations to disease control agents. Journal of Plant Pathology 89(1): 85–96.
  150. Pertot I., Zasso R., Amsalem L., Baldessari M., Angeli G., Elad Y., 2008. Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Protection 27(3): 622–631. https://doi.org/10.1016/j.cropro.2007.09.004 DOI: https://doi.org/10.1016/j.cropro.2007.09.004
  151. Pijnakker J., Moerkens R., Vangansbeke D., Duarte M., Bellinkx S., … Wäckers F., 2022. Dual protection: A tydeoid mite effectively controls both a problem pest and a key pathogen in tomato. Pest Management Science 78(1): 355–361. https://doi.org/10.1002/ps.6647 DOI: https://doi.org/10.1002/ps.6647
  152. Prodorutti D., Profaizer D., Ganarin G., Conci S., Pantezzi T., Angeli G., 2019. Experimental trials to control strawberry powdery mildew in Italy. IOBC-WPRS Bulletin 144: 71–73.
  153. Rea M. S., Bullough J. D., Bierman A. C., 2022. Output reduction over time of germicidal UV-C lamps used for treating agricultural crops. Leukos - Journal of Illuminating Engineering Society of North America 18(4): 438–446. https://doi.org/10.1080/15502724.2021.1921594 DOI: https://doi.org/10.1080/15502724.2021.1921594
  154. Reuveni M., Reuveni R., 1998. Foliar applications of mono-potassium phosphate fertilizer inhibit powdery mildew development in nectarine trees. Canadian Journal of Plant Pathology 20(3): 253–258. https://doi.org/10.1080/07060669809500391 DOI: https://doi.org/10.1080/07060669809500391
  155. Reuveni M., Agapov V., Reuveni R., 1995. Suppression of cucumber powdery mildew Sphaerotheca fuliginea by foliar sprays of phoshate and potassium salts. Plant Pathology 44(1): 31–39. https://doi.org/10.1111/j.1365-3059.1995.tb02713.x DOI: https://doi.org/10.1111/j.1365-3059.1995.tb02713.x
  156. Reuveni M., Sanches E., Barbier M., 2020. Curative and suppressive activities of essential tea tree oil against fungal plant pathogens. Agronomy 10(4): 609. https://doi.org/10.3390/AGRONOMY10040609 DOI: https://doi.org/10.3390/agronomy10040609
  157. Rimal A., Fletcher S. M., McWatters K. H., Misra S. K., Deodhar S., 2001. Perception of food safety and changes in food consumption habits: A consumer analysis. International Journal of Consumer Studies 25(1): 43–52. https://doi.org/10.1111/j.1470-6431.2001.00162.x DOI: https://doi.org/10.1111/j.1470-6431.2001.00162.x
  158. Rjiba-Touati K., Ayed-Boussema I., Hamdi H., Abid S., 2023. Genotoxic damage and apoptosis in rat glioma (F98) cell line following exposure to bromuconazole. NeuroToxicology 94: 108–116. https://doi.org/10.1016/j.neuro.2022.11.006 DOI: https://doi.org/10.1016/j.neuro.2022.11.006
  159. Roberti R., Flori P., Brunelli A., Bini, F., 2002. Compatibility of the antagonistic fungi Ampelomyces quisqualis and Beauveria bassiana with fungicides. In: Atti, Giornate fitopatologiche, 7-11 Aprile, 2002, Baselga di Piné, Trento, Italy, 541-546.
  160. Rodrigues F. A., Duarte H. S. S., Domiciano G. P., Souza C. A., Korndörfer G.H., 2009. Foliar application of potassium silicate reduces the intensity of soybean rust. Australasian Plant Pathology 38: 366–372. https://doi.org/10.1071/AP09010 DOI: https://doi.org/10.1071/AP09010
  161. Rossi F. G., Asalf B., Grieu C., Onofre R. B., Peres N. A., … Stensvand A., 2020. Effect of water stress on reproduction and colonization of Podosphaera aphanis of strawberry. Plant Disease 104(11): 2973–2978. https://doi.org/10.1094/PDIS-10-19-2172-RE DOI: https://doi.org/10.1094/PDIS-10-19-2172-RE
  162. Rusch H., Laurence J. A., 1993. Interactive effects of ozone and powdery mildew on pea seedlings. Phytopathology 83(11): 1258–1263. DOI: https://doi.org/10.1094/Phyto-83-1258
  163. Salmon E. S., 1900. The strawberry mildew. J. R. Horticultural Society 25:132–138.
  164. Sánchez-Hermosilla J., Rincón V.J., Páez F., Agüera F., Carvajal F. 2011. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops. Pest Management Science 67: 942–947. https://doi.org/10.1002/ps.2135 DOI: https://doi.org/10.1002/ps.2135
  165. Sánchez-Hermosilla J., Rincón V. J., Páez F., Fernández M., 2012. Comparative spray deposits by manually pulled trolley sprayer and a spray gun in greenhouse tomato crops. Crop Protection 31(1): 119–124. https://doi.org/10.1016/j.cropro.2011.10.007 DOI: https://doi.org/10.1016/j.cropro.2011.10.007
  166. SANCO, 2012. European Commission Health & consumer protection Directorate-General 2012. Guidance document on botanical active substances used in plant protection products 11470/2012-rev8.
  167. SANTE, 2021. European Commission Health & consumer protection Directorate-General 2021. Review report 12354/2015– rev3.
  168. Schmidt H. P., Kammann C., Hagemann N., Leifeld J., Bucheli T. D., … Cayuela, M. L., 2021. Biochar in agriculture – A systematic review of 26 global meta-analyses. GCB Bioenergy 13(11): 1708–1730. https://doi.org/10.1111/gcbb.12889 DOI: https://doi.org/10.1111/gcbb.12889
  169. Seal P., Das P., Biswas A. K., 2018. Versatile potentiality of silicon in mitigation of biotic and abiotic stresses in plants: a review. American Journal of Plant Sciences 09(07): 1433–1454. https://doi.org/10.4236/ajps.2018.97105 DOI: https://doi.org/10.4236/ajps.2018.97105
  170. Sargent D.J., Buti M., Šurbanovski N., Brurberg M.B., Alsheikh M., … Davik J., 2019. Identification of QLTs for powdery mildew (Podosphaera aphanis; syn. Sphaerotheca macularis f. sp. fragariae) susceptibility in cultivated strawberry (Fragaria ×ananassa). PLoS One 14: e0222829. https://doi.org/10.1371/journal.pone.0222829 DOI: https://doi.org/10.1371/journal.pone.0222829
  171. Sharratt W. J., Peterson E., Calbert H.E., 1959. Whey as a source of nutrients and its effect on the soil. Journal of Dairy Science 42(7): 1126–1131. DOI: https://doi.org/10.3168/jds.S0022-0302(59)90705-2
  172. Shin J., Chang Y. K., Heung B., Nguyen-Quang T., Price G. W., Al-Mallahi A., 2020. Effect of directional augmentation using supervised machine learning technologies: A case study of strawberry powdery mildew detection. Biosystems Engineering 194: 49–60. https://doi.org/10.1016/j.biosystemseng.2020.03.016 DOI: https://doi.org/10.1016/j.biosystemseng.2020.03.016
  173. Shin J., Chang Y. K., Heung B., Nguyen-Quang T., Price G. W., Al-Mallahi A., 2021. A deep learning approach for RGB image-based powdery mildew disease detection on strawberry leaves. Computers and Electronics in Agriculture 183: 106042. https://doi.org/10.1016/j.compag.2021.106042 DOI: https://doi.org/10.1016/j.compag.2021.106042
  174. Silva R. R., da Silva A. C., Rodella R. A., Marques M. O., Zanuncio A. … Furtado E. L., 2020. Limonene, a chemical compound related to the resistance of Eucalyptus species to Austropuccinia psidii. Plant Disease 104(2): 414–422. https://doi.org/10.1094/PDIS-05-19-1002-RE DOI: https://doi.org/10.1094/PDIS-05-19-1002-RE
  175. Sprague R. H. and Carlson E. D., 1982. Building Effective Decision Support Systems, Prentice-Hall, Inc., Englewood Clifts, N.J. 329 pp.
  176. Sombardier A., Savary S., Blancard D., Jolivet, J., Willocquet L. (2009). Effects of leaf surface and temperature on monocyclic processes in Podosphaera aphanis, causing powdery mildew of strawberry. Canadian Journal of Plant Pathology 31(4): 439–448. https://doi.org/10.1080/07060660909507618 DOI: https://doi.org/10.1080/07060660909507618
  177. Sombardier A., Dufour M. C., Blancard D., Corio-Costet M. F., 2010. Sensitivity of Podosphaera aphanis isolates to dmi fungicides: Distribution and reduced cross-sensitivity. Pest Management Science 66(1): 35–43. https://doi.org/10.1002/ps.1827 DOI: https://doi.org/10.1002/ps.1827
  178. Sønsteby A., Woznicki T. L., Heide O. M., 2021. Effects of runner removal and partial defoliation on the growth and yield performance of ‘Favori’ everbearing strawberry plants. Horticulturae 7(8). https://doi.org/10.3390/horticulturae7080215 DOI: https://doi.org/10.3390/horticulturae7080215
  179. Stephenson W. M., 1966. The effect of hydrolysed seaweed on certain plant pests and diseases. In: Proceedings of the Fifth International Seaweed Symposium, Halifax, August 1965, 405–415. DOI: https://doi.org/10.1016/B978-0-08-011841-3.50064-1
  180. Stenberg J. A., Sundh I., Becher P. G., Björkman C., Dubey M., … Viketoft, M., 2021. When is it biological control? A framework of definitions, mechanisms, and classifications. Journal of Pest Science 94(3): 665–676. https://doi.org/10.1007/S10340-021-01354-7/FIGURES/2 DOI: https://doi.org/10.1007/s10340-021-01354-7
  181. Sundheim L., 1982. Control of cucumber powdery mildew by the hyperparasite Ampelomyces quisqualis and fungicides. Plant Pathology 31(3): 209–214. DOI: https://doi.org/10.1111/j.1365-3059.1982.tb01270.x
  182. Suthaparan A., Stensvand A., Solhaug K. A., Torre S., Mortensen L. … Gislerød H. R., 2012. Suppression of powdery mildew (Podosphaera pannosa) in greenhouse roses by brief exposure to supplemental UV-B radiation. Plant Disease 96(11): 1653–1660. https://doi.org/10.1094/PDIS-01-12-0094-RE DOI: https://doi.org/10.1094/PDIS-01-12-0094-RE
  183. Sylla J., Alsanius B. W., Krüger E., Becker D., Wohanka W., 2013. Invitro compatibility of microbial agents for simultaneous application to control strawberry powdery mildew (Podosphaera aphanis). Crop Protection 51: 40–47. https://doi.org/10.1016/j.cropro.2013.04.011 DOI: https://doi.org/10.1016/j.cropro.2013.04.011
  184. Tapia R.R., Barbey C.R., Chandra S., Folta K.M., Whitaker V.M., Lee S. 2021. Evolution of the MLO gene families in octoploid strawberry (Fragaria ×ananassa) and progenitor diploid species identified potential genes for strawberry powdery mildew resistance. Horticulture Research 8: 153. https://doi.org/10.1038/s41438- 021-00587-y DOI: https://doi.org/10.1038/s41438-021-00587-y
  185. Tavares W. R., Barreto M. D. C., Seca A. M., 2021. Aqueous and ethanolic plant extracts as bio-insecticides—Establishing a bridge between raw scientific data and practical reality. Plants 10(5): 920. DOI: https://doi.org/10.3390/plants10050920
  186. Tziros G. T., Samaras A., Karaoglanidis G. S., 2021. Laminarin induces defense responses and efficiently controls olive leaf spot disease in olive. Molecules 26(4): 1043. https://doi.org/10.3390/molecules26041043 DOI: https://doi.org/10.3390/molecules26041043
  187. Tzortzakis N., Chrysargyris A. 2017. Postharvest ozone application for the preservation of fruits and vegetables. Food Reviews International 33(3): 270–315. https://doi.org/10.1080/87559129.2016.1175015 DOI: https://doi.org/10.1080/87559129.2016.1175015
  188. van Aubel G., Buonatesta R., Van Cutsem P., 2014. COS-OGA: A novel oligosaccharidic elicitor that protects grapes and cucumbers against powdery mildew. Crop Protection 65: 129–137. https://doi.org/10.1016/j.cropro.2014.07.015 DOI: https://doi.org/10.1016/j.cropro.2014.07.015
  189. Van Delm T., Melis P., Stoffels K., Baets W., 2014. Control of powdery mildew by UV-C treatments in commercial strawberry production. Acta Horticulturae 1049: 679–684. https://doi.org/10.17660/ActaHortic.2014.1049.105 DOI: https://doi.org/10.17660/ActaHortic.2014.1049.105
  190. Van der Heyden H., Lefebvre M., Roberge L., Brodeur L., Carisse O., 2014. Spatial pattern of strawberry powdery mildew (Podosphaera aphanis) and airborne inoculum. Plant Disease 98(1): 43–54. https://doi.org/10.1094/PDIS-10-12-0946-RE DOI: https://doi.org/10.1094/PDIS-10-12-0946-RE
  191. Van Maanen A., Xu X. M., 2003. Modelling plant disease epidemics. European Journal of Plant Pathology 109(7): 669–682. https://doi.org/10.1023/A:1026018005613 DOI: https://doi.org/10.1023/A:1026018005613
  192. Vinale F., Sivasithamparam K., Ghisalberti E. L., Marra R., Woo S. L., Lorito M., 2008. Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry 40(1): 1–10. DOI: https://doi.org/10.1016/j.soilbio.2007.07.002
  193. Wan D.Y., Guo Y., Cheng Y., Hu Y., Xiao S., … Wen Y.Q., 2020. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Horticulture Research 7: 116. https://doi.org/ 10.1038/s41438-020-0339-8 DOI: https://doi.org/10.1038/s41438-020-0339-8
  194. Wang M., Gao L., Dong S., Sun Y., Shen Q., Guo, S., 2017. Role of silicon on plant–pathogen interactions. Frontiers in Plant Science 8: 701. https://doi.org/10.3389/fpls.2017.00701 DOI: https://doi.org/10.3389/fpls.2017.00701
  195. Wink M., 1988. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theoretical and Applied Genetics 75: 225–233. DOI: https://doi.org/10.1007/BF00303957
  196. Willocquet L., Berud F., Raoux L., Clerjeau M., 1998. Effects of wind, relative humidity, leaf movement and colony age on dispersal of conidia of Uncinula necator, causal agent of grape powdery mildew. Plant Pathology 47(3): 234–242. https://doi.org/10.1046/j.1365-3059.1998.00242.x DOI: https://doi.org/10.1046/j.1365-3059.1998.00242.x
  197. Willocquet L., Sombardier A., Blancard D., Jolivet J., Savary S., 2008. Spore dispersal and disease gradients in strawberry powdery mildew. Canadian Journal of Plant Pathology 30(3): 434–441. https://doi.org/10.1080/07060660809507541 DOI: https://doi.org/10.1080/07060660809507541
  198. Wulf F., Podhorna J., Rybak M., Büttner C., Bandte M., 2023. Studies on the potential of the basic substance chitosan in managing Podosphaera pannosa on cutting roses and Erysiphe polygoni on French hydrangea. Journal of Plant Diseases and Protection 1–8. https://doi.org/10.1007/s41348-023-00714-y DOI: https://doi.org/10.1007/s41348-023-00714-y
  199. Xiao C. L., Chandler C. K., Price J. F., Duval J. R., Mertely J. C., Legard D. E., 2001. Comparison of epidemics of botrytis fruit rot and powdery mildew of strawberry in large plastic tunnel and field production systems. Plant Disease 85(8): 901–909. https://doi.org/10.1094/PDIS.2001.85.8.901 DOI: https://doi.org/10.1094/PDIS.2001.85.8.901
  200. Xing K., Zhu X., Peng X., Qin S., 2015. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development 35(2): 569–588. https://doi.org/10.1007/s13593-014-0252-3 DOI: https://doi.org/10.1007/s13593-014-0252-3
  201. Xu X., Robinson J., Else M. A., 2013. Effects of nitrogen input and deficit irrigation within the commercial acceptable range on susceptibility of strawberry leaves to powdery mildew. European Journal of Plant Pathology 135(4): 695–701. https://doi.org/10.1007/s10658-012-0106-2 DOI: https://doi.org/10.1007/s10658-012-0106-2
  202. Yeul V. S., Rayalu S. S., 2013. Unprecedented chitin and chitosan: a chemical overview. Journal of Polymers and the Environment 21(2): 606–614. https://doi.org/10.1007/s10924-012-0458-x DOI: https://doi.org/10.1007/s10924-012-0458-x
  203. Yin W., Wang X., Liu H., Wang Y., van Nocker S. … Wang X., 2022. Overexpression of VqWRKY31 enhances powdery mildew resistance in grapevine by promoting salicylic acid signalling and specific metabolite synthesis. Horticulture Research 9: uhab064. https://doi.org/10.1093/hr/uhab064 DOI: https://doi.org/10.1093/hr/uhab064
  204. Zhang P., Zhu Y., Zhou, S., 2021. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection. BMC Plant Biology 21(1): 1–13. https://doi.org/10.1186/s12870-020-02797-3 DOI: https://doi.org/10.1186/s12870-020-02797-3
  205. Zhang X., Wu M., Yao H., Yang Y., Cui M., … Xiang H., 2016. Pesticide poisoning and neurobehavioral function among farm workers in Jiangsu, People’s Republic of China. Cortex 74: 396–404. https://doi.org/10.1016/j.cortex.2015.09.006 DOI: https://doi.org/10.1016/j.cortex.2015.09.006
  206. Ziv O., Zitter T. A., 1992. Bicarbonates to control cucurbit disease. Plant Disease 76: 513–517. DOI: https://doi.org/10.1094/PD-76-0513
  207. Zotti M., Dos Santos E. A., Cagliari D., Christiaens O., Taning C. N. T., Smagghe G., 2018. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science 74(6): 1239–1250. https://doi.org/10.1002/ps.4813 DOI: https://doi.org/10.1002/ps.4813