Vol. 62 No. 3 (2023)
Articles

Symptomatic, widespread, and inconspicuous: new detection of tomato fruit blotch virus

Arnaud G. BLOUIN
Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon
Bio
Nathalie DUBUIS
Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon
Justine BRODARD
Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon
Laure APOTHÉLOZ-PERRET-GENTIL
Diagnostic moléculaire des organismes nuisibles réglementés des végétaux, Agroscope, 1260 Nyon
Denise ALTENBACH
Diagnostic moléculaire des organismes nuisibles réglementés des végétaux, Agroscope, 1260 Nyon
Olivier SCHUMPP
Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon

Published 2023-09-15

Keywords

  • Kitaviridae,
  • Blunervirus solani,
  • Flongle sequencing,
  • dsRNA

How to Cite

[1]
A. G. BLOUIN, N. DUBUIS, J. BRODARD, APOTHÉLOZ-PERRET-GENTIL L., D. ALTENBACH, and O. SCHUMPP, “Symptomatic, widespread, and inconspicuous: new detection of tomato fruit blotch virus”, Phytopathol. Mediterr., vol. 62, no. 3, pp. 349–354, Sep. 2023.

Abstract

Tomato production is an important part of the Swiss vegetable production with most tomato crops grown in greenhouses. Tomato plants are vulnerable to diseases caused by viruses, which can have significant impacts on crop production. This study reports the first detection of tomato fruit botch virus (ToFBV, Blunervirus solani) in Switzerland, from a tomato production site at the southern part of the Ticino region. The symptoms observed indicated presence of a viral pathogen, but tests against the most common tomato viruses were negative. Immunocapture of double-stranded RNA and its subsequent sequencing on a Flongle flowcell (Oxford Nanopore Technologies) identified the presence of ToFBV and southern tomato virus. The genome of the Swiss ToFBV isolate was very similar to that available in GenBank. Datamining of the sequence read archives found the virus in two other countries, with a highly conserved genome. With this study, there are now 12 near-complete genomes of ToFBV available, and the virus is recorded from ten countries. This study underlines the importance of continuous monitoring and research on emerging viruses in tomato production.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Antipov D., Korobeynikov A., McLean J.S., Pevzner P.A., 2015. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32(7): 1009–1015. https://doi.org/10.1093/bioinformatics/btv688
  2. Blouin A.G., Ross H. A., Hobson‐Peters J., O’Brien C. A., Warren B., MacDiarmid R., 2016. A new virus discovered by immunocapture of double‐stranded RNA, a rapid method for virus enrichment in metagenomic studies. Molecular Ecology Resources 16: 1255–1263. https://doi.org/10.1111/1755-0998.12525
  3. Caruso A.G., Bertacca S., Parrella G., Rizzo R., Davino S., Panno S., 2022. Tomato brown rugose fruit virus: A pathogen that is changing the tomato production worldwide. Annals of Applied Biology 181: 258–274. https://doi.org/10.1111/aab.12788
  4. Ciuffo M., Kinoti W., Tiberini A., Forgia M., Tomassoli L., … Turina M., 2020. A new blunervirus infects tomato crops in Italy and Australia. Archives of Virology 165: 2379–2384. https://doi.org/10.1007/s00705-020-04760-x
  5. Dolja V.V., Krupovic M., Koonin E.V., 2020. Deep Roots and Splendid Boughs of the Global Plant Virome. Annual Review of Phytopathology 58(1): 23–53. https://doi.org/10.1146/annurev-phyto-030320-041346
  6. Edgar R. C., Taylor J., Lin V., Altman T., Barbera P., … Babaian, A., 2022. Petabase-scale sequence alignment catalyses viral discovery. Nature 602: 142–147. https://doi.org/10.1038/s41586-021-04332-2
  7. Kitajima E.W., Nakasu E.Y.T., Inoue-Nagata A. K., Salaroli R.B., Ramos-González P.L., 2022. Tomato fruit blotch virus cytopathology strengthens evolutionary links between plant blunerviruses and insect negeviruses. Scientia Agricola 80: e20220045. https://doi.org/10.1590/1678-992X-2022-0045
  8. Langmead B., Trapnell C., Pop M., Salzberg S.L., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10: 1–10. https://doi.org/10.1186/gb-2009-10-3-r25
  9. Li H., 2021. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37: 4572–4574. https://doi.org/10.1093/bioinformatics/btab705
  10. Maachi A., Torre C., Sempere R.N., Hernando Y., Aranda M.A., Donaire L., 2021. Use of High-Throughput Sequencing and Two RNA Input Methods to Identify Viruses Infecting Tomato Crops. Microorganisms 9: 1043. https://doi.org/10.3390/microorganisms9051043
  11. Mahillon M., Kellenberger I., Dubuis N., Brodard J., Bunter M., … Schumpp O., 2022. First report of Tomato brown rugose fruit virus in tomato in Switzerland. New Disease Reports 45: e12065. https://doi.org/10.1002/ndr2.12065
  12. Nakasu E.Y.T., Nagata T., Inoue-Nagata A.K., 2022. First Report of Tomato Fruit Blotch Virus Infecting Tomatoes in Brazil. Plant Disease 106: 2271. https://doi.org/10.1094/PDIS-07-21-1392-PDN
  13. O’Brien C.A., Hobson-Peters J., Yam A. W.Y., Colmant A. M., McLean B. J., … Hall R.A., 2015. Viral RNA intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Neglected Tropical Diseases 9:e0003629. https://doi.org/10.1371/journal.pntd.0003629
  14. Panno S., Davino S., Caruso A.G., Bertacca S., Crnogorac A., … Matić, S., 2021. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 11: 2188. https://doi.org/10.3390/agronomy11112188
  15. Petrasch S., Silva C.J., Mesquida-Pesci S.D., Gallegos K., van den Abeele C., … Blanco-Ulate B., 2019. Infection Strategies Deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a Function of Tomato Fruit Ripening Stage. Frontiers in Plant Science 10: 223. https://doi.org/10.3389/fpls.2019.00223
  16. Prjibelski A.D., Vasilinetc I., Bankevich A., Gurevich A., Krivosheeva T., … Pevzner P.A., 2014. ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics 30(12): i293–i301. https://doi.org/10.1093/bioinformatics/btu266
  17. Ramos-González P.L., Kondo H., Morozov S., Vasilakis N., Varsani A., … Freitas-Astúa J., 2022. The Border Between Kitavirids and Nege-Like Viruses: Tracking the Evolutionary Pace of Plant-and Arthropod-Infecting Viruses. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.932523
  18. Ramos-González P. L., Arena G.D., Tassi A.D., Chabi-Jesus C., Kitajima E.W., Freitas-Astúa J., 2023. Kitaviruses: A Window to Atypical Plant Viruses Causing Nonsystemic Diseases. Annual Review of Phytopathology 61. https://doi.org/10.1146/annurev-phyto-021622-121351
  19. Rivarez M. P. S., Vučurović A., Mehle N., Ravnikar M., Kutnjak D., 2021. Global advances in tomato virome research: current status and the impact of high-throughput sequencing. Frontiers in Microbiology 12: 671925. https://doi.org/10.3389/fmicb.2021.671925
  20. Rivarez M. P. S., Pecman A., Bačnik K., Maksimović O., Vučurović A., … Kutnjak, D., 2022. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. Microbiome 11(1): 60. https://doi.org/10.1186/s40168-023-01500-6
  21. Sabanadzovic S., Valverde R. A., Brown J. K., Martin R. R., Tzanetakis, I.E., 2009. Southern tomato virus: the link between the families Totiviridae and Partitiviridae. Virus Research 140: 130–137. https://doi.org/10.1016/j.virusres.2008.11.018
  22. Swiss Federal Statistical Office 2022, https://www.bfs.admin.ch/bfs/fr/home/statistiques/agriculture-sylviculture/alimentation/production-primaire.html accessed July 3rd 2023
  23. Temple C., Blouin A. G., De Jonghe K., Foucart Y., Botermans M., … Massart S., 2022. Biological and genetic characterization of Physostegia chlorotic mottle virus in Europe based on host range, location, and time. Plant Disease 106: 11, 2797–2807. https://doi.org/10.1094/PDIS-12-21-2800-RE
  24. The Galaxy Community. 2022. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Research 50: W345–W351. https://doi.org/10.1093/nar/gkac247
  25. Turco S., Golyaev V., Seguin J., Gilli C., Farinelli L., … Pooggin, M.M., 2018. Small RNA-Omics for Virome Reconstruction and Antiviral Defense Characterization in Mixed Infections of Cultivated Solanum Plants. Molecular Plant-Microbe Interactions 31: 707–723. https://doi.org/10.1094/MPMI-12-17-0301-R
  26. Vasilinetc I., Prjibelski A.D., Gurevich A., Korobeynikov A., Pevzner P.A., 2015. Assembling short reads from jumping libraries with large insert sizes. Bioinformatics 31(20): 3262–3268. https://doi.org/10.1093/bioinformatics/btv337