Published 2023-09-15
Keywords
- Kitaviridae,
- Blunervirus solani,
- Flongle sequencing,
- dsRNA
How to Cite
Copyright (c) 2023 Arnaud G. BLOUIN, Nathalie DUBUIS, Justine BRODARD, Laure APOTHÉLOZ-PERRET-GENTIL, Denise ALTENBACH, Olivier SCHUMPP
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Tomato production is an important part of the Swiss vegetable production with most tomato crops grown in greenhouses. Tomato plants are vulnerable to diseases caused by viruses, which can have significant impacts on crop production. This study reports the first detection of tomato fruit botch virus (ToFBV, Blunervirus solani) in Switzerland, from a tomato production site at the southern part of the Ticino region. The symptoms observed indicated presence of a viral pathogen, but tests against the most common tomato viruses were negative. Immunocapture of double-stranded RNA and its subsequent sequencing on a Flongle flowcell (Oxford Nanopore Technologies) identified the presence of ToFBV and southern tomato virus. The genome of the Swiss ToFBV isolate was very similar to that available in GenBank. Datamining of the sequence read archives found the virus in two other countries, with a highly conserved genome. With this study, there are now 12 near-complete genomes of ToFBV available, and the virus is recorded from ten countries. This study underlines the importance of continuous monitoring and research on emerging viruses in tomato production.
Downloads
Metrics
References
- Antipov D., Korobeynikov A., McLean J.S., Pevzner P.A., 2015. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32(7): 1009–1015. https://doi.org/10.1093/bioinformatics/btv688
- Blouin A.G., Ross H. A., Hobson‐Peters J., O’Brien C. A., Warren B., MacDiarmid R., 2016. A new virus discovered by immunocapture of double‐stranded RNA, a rapid method for virus enrichment in metagenomic studies. Molecular Ecology Resources 16: 1255–1263. https://doi.org/10.1111/1755-0998.12525
- Caruso A.G., Bertacca S., Parrella G., Rizzo R., Davino S., Panno S., 2022. Tomato brown rugose fruit virus: A pathogen that is changing the tomato production worldwide. Annals of Applied Biology 181: 258–274. https://doi.org/10.1111/aab.12788
- Ciuffo M., Kinoti W., Tiberini A., Forgia M., Tomassoli L., … Turina M., 2020. A new blunervirus infects tomato crops in Italy and Australia. Archives of Virology 165: 2379–2384. https://doi.org/10.1007/s00705-020-04760-x
- Dolja V.V., Krupovic M., Koonin E.V., 2020. Deep Roots and Splendid Boughs of the Global Plant Virome. Annual Review of Phytopathology 58(1): 23–53. https://doi.org/10.1146/annurev-phyto-030320-041346
- Edgar R. C., Taylor J., Lin V., Altman T., Barbera P., … Babaian, A., 2022. Petabase-scale sequence alignment catalyses viral discovery. Nature 602: 142–147. https://doi.org/10.1038/s41586-021-04332-2
- Kitajima E.W., Nakasu E.Y.T., Inoue-Nagata A. K., Salaroli R.B., Ramos-González P.L., 2022. Tomato fruit blotch virus cytopathology strengthens evolutionary links between plant blunerviruses and insect negeviruses. Scientia Agricola 80: e20220045. https://doi.org/10.1590/1678-992X-2022-0045
- Langmead B., Trapnell C., Pop M., Salzberg S.L., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10: 1–10. https://doi.org/10.1186/gb-2009-10-3-r25
- Li H., 2021. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37: 4572–4574. https://doi.org/10.1093/bioinformatics/btab705
- Maachi A., Torre C., Sempere R.N., Hernando Y., Aranda M.A., Donaire L., 2021. Use of High-Throughput Sequencing and Two RNA Input Methods to Identify Viruses Infecting Tomato Crops. Microorganisms 9: 1043. https://doi.org/10.3390/microorganisms9051043
- Mahillon M., Kellenberger I., Dubuis N., Brodard J., Bunter M., … Schumpp O., 2022. First report of Tomato brown rugose fruit virus in tomato in Switzerland. New Disease Reports 45: e12065. https://doi.org/10.1002/ndr2.12065
- Nakasu E.Y.T., Nagata T., Inoue-Nagata A.K., 2022. First Report of Tomato Fruit Blotch Virus Infecting Tomatoes in Brazil. Plant Disease 106: 2271. https://doi.org/10.1094/PDIS-07-21-1392-PDN
- O’Brien C.A., Hobson-Peters J., Yam A. W.Y., Colmant A. M., McLean B. J., … Hall R.A., 2015. Viral RNA intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Neglected Tropical Diseases 9:e0003629. https://doi.org/10.1371/journal.pntd.0003629
- Panno S., Davino S., Caruso A.G., Bertacca S., Crnogorac A., … Matić, S., 2021. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 11: 2188. https://doi.org/10.3390/agronomy11112188
- Petrasch S., Silva C.J., Mesquida-Pesci S.D., Gallegos K., van den Abeele C., … Blanco-Ulate B., 2019. Infection Strategies Deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a Function of Tomato Fruit Ripening Stage. Frontiers in Plant Science 10: 223. https://doi.org/10.3389/fpls.2019.00223
- Prjibelski A.D., Vasilinetc I., Bankevich A., Gurevich A., Krivosheeva T., … Pevzner P.A., 2014. ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics 30(12): i293–i301. https://doi.org/10.1093/bioinformatics/btu266
- Ramos-González P.L., Kondo H., Morozov S., Vasilakis N., Varsani A., … Freitas-Astúa J., 2022. The Border Between Kitavirids and Nege-Like Viruses: Tracking the Evolutionary Pace of Plant-and Arthropod-Infecting Viruses. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.932523
- Ramos-González P. L., Arena G.D., Tassi A.D., Chabi-Jesus C., Kitajima E.W., Freitas-Astúa J., 2023. Kitaviruses: A Window to Atypical Plant Viruses Causing Nonsystemic Diseases. Annual Review of Phytopathology 61. https://doi.org/10.1146/annurev-phyto-021622-121351
- Rivarez M. P. S., Vučurović A., Mehle N., Ravnikar M., Kutnjak D., 2021. Global advances in tomato virome research: current status and the impact of high-throughput sequencing. Frontiers in Microbiology 12: 671925. https://doi.org/10.3389/fmicb.2021.671925
- Rivarez M. P. S., Pecman A., Bačnik K., Maksimović O., Vučurović A., … Kutnjak, D., 2022. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. Microbiome 11(1): 60. https://doi.org/10.1186/s40168-023-01500-6
- Sabanadzovic S., Valverde R. A., Brown J. K., Martin R. R., Tzanetakis, I.E., 2009. Southern tomato virus: the link between the families Totiviridae and Partitiviridae. Virus Research 140: 130–137. https://doi.org/10.1016/j.virusres.2008.11.018
- Swiss Federal Statistical Office 2022, https://www.bfs.admin.ch/bfs/fr/home/statistiques/agriculture-sylviculture/alimentation/production-primaire.html accessed July 3rd 2023
- Temple C., Blouin A. G., De Jonghe K., Foucart Y., Botermans M., … Massart S., 2022. Biological and genetic characterization of Physostegia chlorotic mottle virus in Europe based on host range, location, and time. Plant Disease 106: 11, 2797–2807. https://doi.org/10.1094/PDIS-12-21-2800-RE
- The Galaxy Community. 2022. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Research 50: W345–W351. https://doi.org/10.1093/nar/gkac247
- Turco S., Golyaev V., Seguin J., Gilli C., Farinelli L., … Pooggin, M.M., 2018. Small RNA-Omics for Virome Reconstruction and Antiviral Defense Characterization in Mixed Infections of Cultivated Solanum Plants. Molecular Plant-Microbe Interactions 31: 707–723. https://doi.org/10.1094/MPMI-12-17-0301-R
- Vasilinetc I., Prjibelski A.D., Gurevich A., Korobeynikov A., Pevzner P.A., 2015. Assembling short reads from jumping libraries with large insert sizes. Bioinformatics 31(20): 3262–3268. https://doi.org/10.1093/bioinformatics/btv337