Vol. 60 No. 2 (2023): including 12th Special issue on Grapevine Trunk Diseases
Research papers - 12th Special Issue on Grapevine Trunk Diseases

Activity of biocontrol agents against the grapevine pathogen Fomitiporia mediterranea

Federal College and Research Institute for Viticulture and Pomology Klosterneuburg, Wienerstraße 74, 3400 Klosterneuburg
AIT Austrian Institute of Technology GmbH, Bioresources, Konrad-Lorenz-Straße 24, 3430 Tulln
Federal College and Research Institute for Viticulture and Pomology Klosterneuburg, Wienerstraße 74, 3400 Klosterneuburg
AIT Austrian Institute of Technology GmbH, Bioresources, Konrad-Lorenz-Straße 24, 3430 Tulln

Published 2023-09-15


  • Trichoderma spp.,
  • Bacillus amyloliquefaciens/velezensis,
  • Bacillus subtilis,
  • Pseudomonas koreensis,
  • dual culture assays,
  • wood disk assays
  • ...More

How to Cite

M. RIEDLE-BAUER, D. BANDION, M. MADERCIC, and M. GORFER, “Activity of biocontrol agents against the grapevine pathogen Fomitiporia mediterranea”, Phytopathol. Mediterr., vol. 60, no. 2, pp. 213–226, Sep. 2023.


Biological control agents (BCAs) have shown efficacy against several pathogens associated with Esca of grapevines, but their effects on the white rot pathogen Fomitiporia mediterranea (Fmed) have not been extensively studied. An assessment of several potential BCAs evaluated activity against Fmed. This included isolates of Trichoderma simmonsii, T. citrinoviride, T. atroviride, Bacillus subtilis, B. amyloliquefaciens/velezensis and Pseudomonas koreensis, all obtained from grapevines in Austria. Effects of the BCAs on Fmed growth were assessed in dual culture assays and in assays with fresh and autoclaved grapevine wood disks. In the dual culture assays, all the BCAs reduced growth of Fmed compared to experimental controls. In the Trichoderma experiments, Fmed growth only marginally exceeded the size of the initial mycelium plugs, and growth inhibition for all Fmed isolates and strains was 91 to 97%. Growth of Fmed was inhibited by 55 to 66% by B. amyloliquefaciens/velezensis isolates, by 41 to 49% by B. subtilis isolates, and by 55 to 66% by P. koreensis. In the wood disc assays, Fmed colonized fresh and autoclaved wood. All the Trichoderma isolates almost completely suppressed Fmed growth on fresh and autoclaved wood. Less but statistically significant inhibition was recorded for an isolate of B. amyloliquefaciens/velezensis and one of P. koreensis.


Download data is not yet available.


Metrics Loading ...


BAES (2023). Pflanzenschutzmittel-Register (baes.gv.at), accessed February 12, 2023
Bigot, G., Sivilotti, P., Stecchina, M., Lujan, C., Freccero, A., & Mosetti, D. (2020). Long-term effects of Trichoderma asperellum and Trichoderma gamsii on the prevention of esca in different vineyards of Northeastern Italy. Crop Protection, 137, 105264. https://doi.org/https://doi.org/10.1016/j.cropro.2020.105264
Bruez, E., Vallance, J., Gautier, A., Laval, V., Compant, S., Maurer, W., Sessitsch, A., Lebrun, M.-H., & Rey, P. (2020). Major changes in grapevine wood microbiota are associated with the onset of esca, a devastating trunk disease. Environmental Microbiology, 22(12), 5189–5206. https://doi.org/https://doi.org/10.1111/1462-2920.15180
Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553–556. https://doi.org/10.1080/00275514.1999.12061051
Claverie, M., Notaro, M., Fontaine, F., & Wery, J. (2020). Current knowledge on Grapevine Trunk Diseases with complex etiology: a systemic approach. Phytopathologia Mediterranea, 59(1), 29–53. https://doi.org/10.14601/Phyto-11150
Compant, S., Brader, G., Muzammil, S., Sessitsch, A., Lebrihi, A., & Mathieu, F. (2013). Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl, 58(4), 435–455. https://doi.org/10.1007/s10526-012-9479-6
Del Frari, G., Gobbi, A., Aggerbeck, M. R., Oliveira, H., Hansen, L. H., & Ferreira, R. B. (2019). Characterization of the wood mycobiome of Vitis vinifera in a vineyard affected by esca. Spatial distribution of fungal communities and their putative relation with leaf symptoms. Frontiers in Plant Science, 10(July), 1–19. https://doi.org/10.3389/fpls.2019.00910
del Pilar Martínez-Diz, M., Díaz-Losada, E., Díaz-Fernández, Á., Bouzas-Cid, Y., & Gramaje, D. (2021). Protection of grapevine pruning wounds against Phaeomoniella chlamydospora and Diplodia seriata by commercial biological and chemical methods. Crop Protection, 143, 105465. https://doi.org/https://doi.org/10.1016/j.cropro.2020.105465
Di Marco, S., Metruccio, E. G., Moretti, S., Nocentini, M., Carella, G., Pacetti, A., Battiston, E., Osti, F., & Mugnai, L. (2022). Activity of Trichoderma asperellum Strain ICC 012 and Trichoderma gamsii Strain ICC 080 Toward Diseases of Esca Complex and Associated Pathogens. Frontiers in Microbiology, 12(January), 1–17. https://doi.org/10.3389/fmicb.2021.813410
Felske, A., Engelen, B., Nübel, U., & Backhaus, H. (1996). Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Applied and Environmental Microbiology, 62(11), 4162–4167. https://doi.org/10.1128/aem.62.11.4162-4167.1996
Fischer, M. (2002). A new wood-decaying basidiomycete species associated with esca of grapevine: Fomitiporia mediterranea (Hymenochaetales). Mycological Progress, 1(3), 315–324. https://doi.org/10.1007/s11557-006-0029-4
Fischer, M., & Garcia, V. G. (2015). An annotated checklist of European basidiomycetes related to white rot of grapevine (Vitis vinifera). Phytopathologia Mediterranea, 54(2), 281–298. http://www.jstor.org/stable/43871836
Fischer, M., & Peighami-Ashnaei, S. (2019). Grapevine, esca complex, and environment: the disease triangle. Phytopathologia Mediterranea, 58(1), 17–37. https://doi.org/10.14601/Phytopathol_Mediterr-25086
Fontaine, F., Gramaje, D., Armengol, J., Smart, R., Nagy, Z. A., Borgo, M., Rego, C., & Corio-Costet, M.-F. (2016). Grapevine trunk diseases. A review. International Organisation of Vine and Wine (OIV), December, 24 p. https://hal.archives-ouvertes.fr/hal-01604038%0Ahttps://hal.archives-ouvertes.fr/hal-01604038/document
Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74(8), 2461–2470. https://doi.org/10.1128/AEM.02272-07
Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Gkikas, F., Tako, A., Gkizi, D., Lagogianni, C., Markakis, E. A., & Tjamos, S. E. (2021). Biocontrol Agents against Phaeomoniella chlamydospora in Grapevines.
Gramaje, D., Urbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Disease, 102(1), 12–39. https://doi.org/10.1094/PDIS-04-17-0512-FE
Haidar, R., Yacoub, A., Vallance, J., Compant, S., Antonielli, L., Saad, A., Habenstein, B., Kauffmann, B., Grélard, A., Loquet, A., Attard, E., Guyoneaud, R., & Rey, P. (2021). Bacteria associated with wood tissues of Esca-diseased grapevines: functional diversity and synergy with Fomitiporia mediterranea to degrade wood components. Environmental Microbiology, 23(10), 6104–6121. https://doi.org/10.1111/1462-2920.15676
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species - Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56. https://doi.org/10.1038/nrmicro797
Holzapfel, B. P., Smith, J., & Field, S. (2019). Seasonal vine nutrient dynamics and distribution of Shiraz grapevines V I N E A N D W I N E OPEN ACCESS JOURNAL. 2(May), 363–372.
Jaklitsch, W. M. (2011). European species of Hypocrea part II: Species with hyaline ascospores. Fungal Diversity, 48, 1–250. https://doi.org/10.1007/s13225-011-0088-y
Kassemayer, H.-H., Kluge, F., Bieler, E., Ulrich, M., Grüner, J., Fink, S., Dürrenberger, M., & Fuchs, R. (2022). Trunk anatomy of asymptomatic and symptomatic grapevines provides insights into degradation patterns of wood tissues caused by Esca-associated pathogens. Phytopathologia Mediterranea, 61(3), 451–471. https://doi.org/10.36253/phyto-13154
Lecomte, P., Darrieutort, G., Liminana, J. M., Comont, G., Muruamendiaraz, A., Legorburu, F. J., Choueiri, E., Jreijiri, F., El Amil, R., & Fermaud, M. (2012). New insights into Esca of grapevine: The development of foliar symptoms and their association with xylem discoloration. Plant Disease, 96(7), 924–934. https://doi.org/10.1094/PDIS-09-11-0776-RE
Lecomte, P., Diarra, B., Carbonneau, A., Rey, P., & Chevrier, C. (2018). Esca of grapevine and training practices in France: results of a 10-year survey. Phytopathologia Mediterranea, 57(3), 472–487. https://www.jstor.org/stable/26675709
Massol-Deya, A. A., Odelson, D. A., Hickey, R. F., & Tiedje, J. M. (1995). Bacterial community fingerprinting of amplified 16S and 16--23S ribosomal DNA gene sequences and restriction endonuclease analysis(ARDRA). In A. D. L. Akkermans, J. D. Van Elsas, & F. J. De Bruijn (Eds.), Molecular Microbial Ecology Manual (pp. 289–296). Springer Netherlands. https://doi.org/10.1007/978-94-011-0351-0_20
Mondello, V., Songy, A., Battiston, E., Pinto, C., Coppin, C., Trotel-Aziz, P., Clément, C., Mugnai, L., & Fontaine, F. (2018). Grapevine trunk diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Disease, 102(7), 1189–1217. https://doi.org/10.1094/PDIS-08-17-1181-FE
Moretti, S., Pacetti, A., Pierron, R., Kassemeyer, H. H., Fischer, M., Péros, J. P., Perez-Gonzalez, G., Bieler, E., Schilling, M., Di Marco, S., Gelhaye, E., Mugnai, L., Bertsch, C., & Farine, S. (2021). Fomitiporia mediterranea M. Fisch., the historical Esca agent: a comprehensive review on the main grapevine wood rot agent in Europe. Phytopathologia Mediterranea, 60(2), 351–379. https://doi.org/10.36253/phyto-13021
Mugnai, L., Graniti, A., & Surico, G. (1999). Esca (Black Measles) and Brown Wood-Streaking: Two Old and Elusive Diseases of Grapevines. Plant Disease, 83(5), 404–418. https://doi.org/10.1094/PDIS.1999.83.5.404
Niem, J. M., Billones-Baaijens, R., Stodart, B., & Savocchia, S. (2020). Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases. Frontiers in Microbiology, 11(March), 1–19. https://doi.org/10.3389/fmicb.2020.00477
Ouadi, L., Bruez, E., Bastien, S., Vallance, J., Lecomte, P., Domec, J. C., & Rey, P. (2019). Ecophysiological impacts of Esca, a devastating grapevine trunk disease, on Vitis vinifera L. PLoS ONE, 14(9), 1–20. https://doi.org/10.1371/journal.pone.0222586
Pacetti, A., Moretti, S., Pinto, C., Compant, S., Farine, S., Bertsch, C., & Mugnai, L. (2021). Trunk surgery as a tool to reduce foliar symptoms in diseases of the esca complex and its influence on vine wood microbiota. Journal of Fungi, 7(7). https://doi.org/10.3390/jof7070521
Schilling, M., Maia-Grondard, A., Baltenweck, R., Robert, E., Hugueney, P., Bertsch, C., Farine, S., & Gelhaye, E. (2022). Wood degradation by Fomitiporia mediterranea M. Fischer: Physiologic, metabolomic and proteomic approaches. Frontiers in Plant Science, 13(September), 1–17. https://doi.org/10.3389/fpls.2022.988709
Silva-Valderrama, I., Toapanta, D., Miccono, M. de los A., Lolas, M., Díaz, G. A., Cantu, D., & Castro, A. (2021). Biocontrol Potential of Grapevine Endophytic and Rhizospheric Fungi Against Trunk Pathogens. Frontiers in Microbiology, 11(January), 1–13. https://doi.org/10.3389/fmicb.2020.614620
Stielow, J. B., Lévesque, C. A., Seifert, K. A., Meyer, W., Irinyi, L., Smits, D., Renfurm, R., Verkley, G. J. M., Groenewald, M., Chaduli, D., Lomascolo, A., Welti, S., Lesage-Meessen, L., Favel, A., Al-Hatmi, A. M. S., Damm, U., Yilmaz, N., Houbraken, J., Lombard, L., … Robert, V. (2015). One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia: Molecular Phylogeny and Evolution of Fungi, 35(1), 242–263. https://doi.org/10.3767/003158515X689135
TRBA 460 (2016). Einstufung von Pilzen in Risikogruppen. TRBA 460: Einstufung von Pilzen in Risikogruppen, Titel (bgn-branchenwissen.de), accessed February 12, 2023.
Yacoub, A., Gerbore, J., Magnin, N., Chambon, P., Dufour, M.-C., Corio-Costet, M.-F., Guyoneaud, R., & Rey, P. (2016). Ability of Pythium oligandrum strains to protect Vitis vinifera L., by inducing plant resistance against Phaeomoniella chlamydospora, a pathogen involved in Esca, a grapevine trunk disease. Biological Control, 92, 7–16. https://doi.org/https://doi.org/10.1016/j.biocontrol.2015.08.005
Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 61(3), 1104–1109. https://doi.org/10.1128/aem.61.3.1104-1109.1995