Abstract
As it is well known, bone tissue is characterized by a calcified extracellular matrix which makes this tissue suitable to support the body and protect the inner organs. Lamellar bone tissue is organized in lamellae, 3-7 µm in thickness, and arranged concentrically around vascular channels: the basic structure in this type of organization is called Haversian system or osteon and the diameter of osteons depends on the number of lamellae. Shape and regional density of osteons are related to the bone segment and the specific functional requirements to meet. Aim of this study is to correlate the compact bone tissue microstructure in various classes of mammals, including humans, and birds in order to find an adequate identification key. The results of our study show that in bone tissue samples from various classes of mammals, including humans, and birds the osteonic structure shows peculiar features, often depending on the rate of bone remodelling, different in different animal species. We conclude that a careful microscopic analysis of bone tissue and the characterization of distinctive osteonic features could give a major contribution to forensic medicine to obtain a more reliable recognition of bone findings.