2024: Online First Manuscripts
Research Articles

Challenges and opportunities of genome edited crops: An analysis of experts’ views in Italy through a Delphi survey

Marco Vassallo
CREA Research Center for Agricultural Policies and Bioeconomy
Annalisa Zezza
CREA - Research Centre for Agricultural Policies and Bioeconomy

Published 2024-09-06

Keywords

  • New Breeding techniques,
  • innovation,
  • risk,
  • regulation,
  • Delphi technique

How to Cite

Vassallo, M., & Zezza, A. (2024). Challenges and opportunities of genome edited crops: An analysis of experts’ views in Italy through a Delphi survey. Italian Review of Agricultural Economics (REA). https://doi.org/10.36253/rea-14580

Abstract

New breeding techniques (NBTs) in agriculture have generated significant interest due to their potential to address many sustainability challenges related to food production. However, this potential is hindered by existing regulations and negative societal attitudes. The debate is wide open internationally. In this study, a Delphi technique was applied to assess the potential challenges and opportunities associated with genome editing applied to Italian agriculture. To this extent, a panel ranging from 22 to 27 experts from different professions, including academics, staff scientists, policymakers and farmer associations has been interviewed. The Delphi process included two rounds of expert inputs to reach a reasonable consensus and, in some cases, a potential dissensus. Results revealed that experts reached a strong consensus on the potential benefits of NBTs in agriculture, such as greater agronomic performance and enhanced quality for consumers. Nevertheless, experts did not reach a consensus on excluding some potential risks, like possible toxicity or allergy generation. They also shared concerns about some socio-economic risks like limited seed access, traceability, or negative consumers’ attitudes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Aliaga-Franco N., Zhang C., Presa S., Srivastava A.K., Granell A., Alabadí D., Sadanandom A., Blazquez M.A., Minguet E.G. (2019). Identification of transgene-free CRISPR-edited plants of rice, tomato, and Arabidopsis by monitoring DsRED fluorescence in dry seeds. Frontiers in Plant Science, 10, 1150. DOI: https://doi.org/10.3389/fpls.2019.01150.
  2. Anney V.N. (2014). Ensuring the quality of the findings of qualitative research: looking at trustworthiness criteria. Journal of Emerging Trends in Educational Research and Policy Studies, 5(2): 272-281.
  3. Avella J.R. (2016). Delphi panels: Research design, procedures, advantages, and challenges. International Journal of Doctoral Studies, 11: 305-321. DOI: https://doi.org/10.28945/3561.
  4. Badghan F., Namdar R., Valizadeh N. (2020). Challenges and opportunities of transgenic agricultural products in Iran: convergence of perspectives using Delphi technique. Agriculture & Food Security, 9(4). DOI: https://doi.org/10.1186/s40066-020-00259-5.
  5. Belton I., MacDonald A., Wright G., Hamlin I. (2019). Improving the practical application of the Delphi method in group-based judgment: A six-step prescription for a well-founded and defensible process, Technological Forecasting and Social Change, 147: 72-82. DOI: https://doi.org/10.1016/j.techfore.2019.07.002.
  6. Bisht D.S., Bhatia V., Bhattacharya R. (2019). Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing. In Seminars in cell & developmental biology (Vol. 96, pp. 65-76). Academic Press.
  7. Bolger F., Wright G. (2011). Improving the Delphi process: lessons from social psychological research. Technological Forecasting and Social Change, 78(9): 1500-1513. DOI: https://doi.org/10.1016/j.techfore.2011.07.007.
  8. Broll H., Braeuning A., Lampen A. (2019). European Court of Justice decision for genome editing: Consequences on food/feed risk assessment and detection. Food Control, 104(26): 288-291. DOI: https://doi.org/10.1016/j.foodcont.2019.05.002.
  9. Callaway E. (2018). CRISPR plants now subject to tough GM laws in European Union. Nature, 560(16): 16-17. DOI: https://doi.org/10.1038/d41586-018-05814-6.
  10. Costa-Font M., Gil J.M., Traill W.B. (2008). Consumer acceptance, valuation of and attitudes towards genetically modified food: Review and implications for food policy. Food Policy, 33(2): 99-111. DOI: https://doi.org/10.1016/j.foodpol.2007.07.002.
  11. Cuhls K., (2015). Lessons for Policy-Making from Foresight in Non-European Countries. Policy Paper by the Research, Innovation and Science Policy Experts (RISE). Retrieved from the RISE website: http://ec.europa.eu/research/openvision/pdf/rise/cuhls-lessons_policy_making.pdf.
  12. Dalkey N., Helmer O. (1963). An experimental application of the Delphi method to the use of experts. Management science, 9(3): 458-467. DOI: https://www.jstor.org/stable/2627117.
  13. Dederer H.G., Hamburger D. (2019). Regulation of Plants Derived from Genome Editing—What Lessons to Be Learned from Other Countries? Regulation of Genome Editing in Plant Biotechnology: A Comparative Analysis of Regulatory Frameworks of Selected Countries and the EU, 1-17. Springer Nature Switzerland AG. DOI: https://doi.org/10.1007/978-3-030-17119-3.
  14. De Loë R.C., Melnychuk N., Murray D., Plummer R. (2016). Advancing the state of policy Delphi practice: a systematic review evaluating methodological evolution, innovation, and opportunities. Technological Forecasting and Social Changing, 104: 78-88. DOI: https://doi.org/10.1016/j.techfore.2015.12.009.
  15. Delwaide A.C., Nalley L.L., Dixon B.L., Danforth D.M., Nayga Jr, R.M., Van Loo E.J., Verbeke W. (2015). Revisiting GMOs: are there differences in European consumers’ acceptance and valuation for cisgenically vs transgenically bred rice? PLOS ONE 10(5), e0126060. DOI: https://doi.org/10.1371/journal.pone.0126060.
  16. DeMaria F., Zezza A. (2022). Scientific information and cognitive bias in the case of New Breeding Techniques: exploring Millennials behaviour in Italy. Italian Review of Agricultural Economics, 77(2): 41-60. DOI: https://doi.org/10.36253/rea-13676.
  17. EASAC (European Academies Science Advisory Council) (2017). Science Advice for the Benefit of Europe Genome editing: scientific opportunities, public interests and policy options in the European Union. https://easac.eu/fileadmin/PDF_s/reports_statements/Genome_Editing/EASAC_Report_31_on_Genome_Editing.pdf.
  18. Fiaz S., Ahmar S., Saeed S., Riaz A., Mora-Poblete F., Jung K.H. (2021). Evolution and application of genome editing techniques for achieving food and nutritional security. International journal of molecular sciences, 22(11), 5585. DOI: https://doi.org/10.3390/ijms22115585.
  19. Franklin K.K., Hart J.K. (2007). Idea generation and exploration: benefits and limitations of the policy Delphi research method. Innovative Higher Education, 31(4): 237-246. DOI: http://dx.doi.org/10.1007/s10755-006-9022-8.
  20. Frewer L.J., Fischer A.R.H., Wentholt M.T.A., Marvin H.J.P., Ooms B.W., Coles D., Rowe G. (2011). The use of Delphi methodology in agrifood policy development: Some lessons learned, Technological Forecasting and Social Change, 78(9): 1514-1525. DOI: https://doi.org/10.1016/j.techfore.2011.05.005.
  21. Gao C. (2021). Genome engineering for crop improvement and future agriculture. Cell, 184(6): 1621-1635. DOI: https://doi.org/10.1016/j.cell.2021.01.005.
  22. Gaskell G., Allum N., Stares S., Gutteling J.M. (2003). Europeans and Biotechnology in 2002. Eurobarometer 58.0. A report to the EC Directorate General for Research from the project “Life Sciences in European Society” QLG7-CT-1999-00286. European Commission.
  23. Germany Academy of Science Leopoldina (2019). Towards a scientifically justified, differentiated regulation of genome edited plants in the EU. https://www.leopoldina.org/uploads/tx_leopublication/2019_Stellungnahme_Genomeditierte_Pflanzen_short_en_web_02.pdf.
  24. Halford N.G. (2019). Legislation governing genetically modified and genome‐edited crops in Europe: the need for change. Journal of the Science of Food and Agriculture, 99(1): 8-12. DOI: https://doi.org/10.1002/jsfa.9227.
  25. Hamburger D. (2019). Comparative analysis: the regulation of plants derived from genome editing in Argentina, Australia, Canada, the European Union, Japan and the United States. Regulation of genome editing in plant biotechnology: A comparative analysis of regulatory frameworks of selected countries and the EU, 313-363. DOI: https://doi.org/10.1007/978-3-030-17119-3_8.
  26. Hartung F., Schiemann J. (2014). Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. The Plant Journal, 78(5): 742-752. DOI: https://doi.org/10.1111/tpj.12413.
  27. Hasson F., Keeney S., McKenna H. (2000). Research guidelines for the Delphi survey technique. Journal of Advanced Nursing, 32(4): 1008-1015.
  28. Hsu C-C., Sandford B.A. (2007). The Delphi Technique: Making Sense of Consensus. Practical Assessment, Research & Evaluation, 12(10). DOI: https://doi.org/10.7275/pdz9-th90.
  29. Ishii T., Araki M. (2017). A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops & Food, 8(1): 44-56. DOI: https://doi.org/10.1080/21645698.2016.1261787.
  30. Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., Venkataraman G. (2018). CRISPR for crop improvement: an update review. Frontiers in plant science, 9, 985. DOI: https://doi.org/10.3389/fpls.2018.00985.
  31. Joshi R.K., Bharat S.S., Mishra R. (2020). Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech, 10(9): 400. DOI: https://doi.org/10.1007/s13205-020-02390-3.
  32. Kuper A., Reeves S., Levinson W. (2008). An introduction to reading and appraising qualitative research. British Medical Journal, 337(7666): 404-407. DOI: https://doi.org/10.1136/bmj.a288.
  33. Lassoued R., Hesseln H., Phillips P.W., Smyth S.J. (2018). Top plant breeding techniques for improving food security: an expert Delphi survey of the opportunities and challenges. International Journal of Agricultural Resources, Governance and Ecology, 14(4): 321-337. DOI: https://doi.org/10.1504/IJARGE.2018.097986.
  34. Lassoued R., Macall D.M., Hesseln H., Phillips P.W.B., Smyth S.J. (2019a). Benefits of genome-edited crops: expert opinion. Transgenic Research, 28: 247-256. DOI: https://doi.org/10.1007/s11248-019-00118-5.
  35. Lassoued R., Macall D.M., Hesseln H., Phillips P.W.B., Smyth S.J. (2019b). Risk and safety considerations of genome edited crops: expert opinion. Current Research in Biotechnology, 1: 11-21. DOI: https://doi.org/10.1016/j.crbiot.2019.08.001.
  36. Lemarié S., Marette S. (2022). The socio-economic factors affecting the emergence and impacts of new genomic techniques in agriculture: A scoping review. Trends in Food Science & Technology, 129: 38-48. DOI: https://doi.org/10.1016/j.tifs.2022.07.013.
  37. Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Zhang H., Liu C., Ran Y., Gao C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8(1), 14261. DOI: https://doi.org/10.1038/ncomms14261.
  38. Lowder L.G., Zhang D., Baltes N. J., Paul III J.W., Tang X., Zheng X., Voytas D.F., . Hsieh T.-F., Zhang Y., Qi Y. (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant physiology, 169(2): 971-985. DOI: https://doi.org/10.1104/pp.15.00636.
  39. Lucht J.M. (2015). Public acceptance of plant biotechnology and GM crops. Viruses, 7(8): 4254-4281. DOI: https://doi.org/10.3390/v7082819.
  40. Lusk J.L., Coble K.H. (2005). Risk perceptions, risk preference, and acceptance of risky food. American Journal of Agricultural Economics, 87(2): 393-405. DOI: https://doi.org/10.1111/j.1467-8276.2005.00730.x.
  41. Lusk J.L., McFadden B.R., Rickard B.J. (2015). Which biotech foods are most acceptable to the public? Biotechnology Journal, 10(1): 13-16. DOI: https://doi.org/10.1002/biot.201400561.
  42. Lusk J.L., McFadden B.R., Wilson N. (2018). Do consumers care how a genetically engineered food was created or who created it? Food Policy, 78: 81-90. DOI: https://doi.org/10.1016/j.foodpol.2018.02.007.
  43. Lusser M., Parisi C., Plan D., Rodríguez-Cerezo E. (2012). Deployment of new biotechnologies in plant breeding. Nature biotechnology, 30(3): 231-239. DOI: https://doi.org/10.1038/nbt.2142.
  44. Marbach G. (1991). Il punto sul metodo Delphi. In: Marbach G., Mazziotta C., Rizzi A. (a cura di), Le previsioni: Fondamenti logici e basi statistiche. Milano: ETASLIBRI.
  45. Marangon F., Troiano S., Carzedda M., Nassivera F. (2021). Consumers’ acceptance of genome edited food and the role of information. Italian Review of Agricultural Economics, 76(3): 5-21. DOI: https://doi.org/10.36253/rea-13115.
  46. Medvedieva M.O., Blume Y.B. (2018). Legal regulation of plant genome editing with the CRISPR/Cas9 technology as an example. Cytology and Genetics, 52: 204-212. DOI: https://doi.org/10.3103/S0095452718030106.
  47. Mishra R., Zhao K. (2018). Genome editing technologies and their applications in crop improvement. Plant Biotechnology Reports, 12: 57-68. DOI: https://doi.org/10.1007/s11816-018-0472-0.
  48. National Academies of Sciences, Engineering, and Medicine (2016). Genetically Engineered Crops: Experiences and Prospects. Washington, DC: The National Academies Press. DOI: https://doi.org/10.17226/23395.
  49. Nerva L., Dalla Costa L., Ciacciulli A., Sabbadini S., Pavese V., Dondini L., Vendramin E., Caboni E., Perrone I., Moglia A., Zenoni S., Michelotti V., Micali S., La Malfa S., Gentile A., Tartarini S., Mezzetti B., Botta R., Verde I., Velasco R., Arnaud Malnoy M., Licciardello C. (2023). The role of Italy in the use of advanced plant genomic techniques on fruit trees: state of the art and future perspectives. International Journal of Molecular Sciences, 24(2), 977. DOI: https://doi.org/10.3390/ijms24020977.
  50. Okada A., Arndell T., Borisjuk N., Sharma N., Watson‐Haigh N.S., Tucker E.J., Baumann U., Langridge P., Whitford R. (2019). CRISPR/Cas9‐mediated knockout of Ms1 enables the rapid generation of male‐sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 17(10): 1905-1913. DOI: https://doi.org/10.1111/pbi.13106.
  51. Okoli C., Pawlowski S. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information & Management, 42(1): 15-29. DOI: https://doi.org/10.1016/j.im.2003.11.002.
  52. Purnhagen K.P., Wesseler J.H. (2019). Maximum vs minimum harmonization: what to expect from the institutional and legal battles in the EU on gene editing technologies. Pest Management Science, 75(9): 2310-2315. DOI: https://doi.org/10.1002/ps.5367.
  53. Qaim M. (2016). GM crop regulation. In: Genetically Modified Crops and Agricultural Development (pp. 109-134). New York: Palgrave Macmillan US. DOI: https://doi.org/10.1057/9781137405722_6.
  54. Qaim M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy, 42(2): 129-150. DOI: https://doi.org/10.1002/aepp.13044.
  55. Raza A., Mubarik M.S., Sharif R., Habib M., Jabeen W., Zhang C., Chen H., Chen Z.-H., Siddique K.H.M., Zhuang W., Varshney R.K. (2023). Developing drought‐smart, ready‐to‐grow future crops. The Plant Genome, 16(1). DOI: https://doi.org/10.1002/tpg2.20279.
  56. Rikkonen P., Tapio P., Rintamäki H. (2019). Visions for small-scale renewable energy production on Finnish farms – A Delphi study on the opportunities for new business. Energy Policy, 129: 939-948. DOI: https://doi.org/10.1016/j.enpol.2019.03.004.
  57. Rowe G., Wright G., Bolger F. (1991). Delphi: A re-evaluation of research and theory, Technological Forecasting and Social Change, 39(3): 235-251. DOI: https://doi.org/10.1016/0040-1625(91)90039-I.
  58. Ruder S-L., Kandlikar M. (2023). Governing gene-edited crops: risks, regulations, and responsibilities as perceived by agricultural genomics experts in Canada. Journal of Responsible Innovation, 1-28. DOI: https://doi.org/10.1080/23299460.2023.2167572.
  59. Sedeek K.E., Mahas A., Mahfouz M. (2019). Plant genome engineering for targeted improvement of crop traits. Frontiers in plant science, 10: 114. DOI: https://doi.org/10.3389/fpls.2019.00114.
  60. Shelake R.M., Kadam U.S., Kumar R., Pramanik D., Singh A., Kim J.Y. (2022). Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. Plant Communications, 3(6). DOI: https://doi.org/10.1016/j.xplc.2022.100417.
  61. Shinwari Z.K., Jan S.A., Nakashima K., Yamaguchi-Shinozaki K. (2020). Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnology Reports, 14: 151-162. DOI: https://doi.org/10.1007/s11816-020-00598-6.
  62. Siegrist M. (2008). Factors influencing public acceptance of innovative food technologies and products. Trends in Food Science & Technology, 19(11): 603-608. DOI: https://doi.org/10.1016/j.tifs.2008.01.017.
  63. Spickermann A., Zimmermann M., von der Gracht H.A. (2014). Surface- and deep-level diversity in panel selection – exploring diversity effects on response behaviour in foresight. Technological Forecasting & Social Change, 84: 105-120. DOI: https://doi.org/10.1016/j.techfore.2013.04.009.
  64. Sprink T., Metje J., Schiemann J., Hartung F. (2016). Plant genome editing in the European Union—to be or not to be—a GMO. Plant Biotechnology Reports, 10: 345-351. DOI: https://doi.org/10.1007/s11816-016-0418-3.
  65. Sprink T., Wilhelm R., Hartung F. (2022). Genome editing around the globe: An update on policies and perceptions. Plant Physiology, 190(3): 1579-1587. DOI: https://doi.org/10.1093/plphys/kiac359.
  66. Svitashev S., Schwartz C., Lenderts B., Young J.K., Cigan, M.A. (2016). Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communications, 7(1). DOI: https://doi.org/10.1038/ncomms13274.
  67. Smyth S.J. (2020). Regulatory barriers to improving global food security. Global food security, 26. DOI: https://doi.org/10.1016/j.gfs.2020.100440.
  68. Tagliabue G., Ammann K. (2018). Some basis for a renewed regulation of agri-food biotechnology in the EU. Journal of Agricultural and Environmental Ethics, 31(1): 39-53. DOI: https://doi.org/10.1007/s10806-018-9708-9.
  69. Toda E., Koiso N., Takebayashi A., Ichikawa M., Kiba T., Osakabe K., Osakabe Y., Sakakibara H., Kato N., Okamoto T. (2019). An efficient DNA-and selectable-marker-free genome-editing system using zygotes in rice. Nature Plants, 5(4): 363-368. DOI: https://doi.org/10.1038/s41477-019-0386-z.
  70. Toma C., Picioreanu I. (2016). The Delphi technique: methodological considerations and the need for reporting guidelines in medical journals. International Journal of Public Health Research, 4 (6): 47-59.
  71. Yin K., Qiu J.L. (2019). Genome editing for plant disease resistance: applications and perspectives. Philosophical Transactions of the Royal Society B, 374(1767). DOI: https://doi.org/10.1098/rstb.2018.0322.
  72. Vindigni G., Peri I., Consentino F., Selvaggi R., Spina D. (2022). Exploring consumers’ attitudes towards food products derived by new plant breeding techniques. Sustainability, 14(10), 5995. DOI: https://doi.org/10.3390/su14105995.
  73. Wolt J.D., Wang K., Yang B. (2016). The regulatory status of genome‐edited crops. Plant biotechnology journal, 14(2): 510-518.
  74. Zimny T., Sowa S., Tyczewska A., Twardowski T. (2019). Certain new plant breeding techniques and their marketability in the context of EU GMO legislation–recent developments. New Biotechnology, 51: 49-56. DOI: https://doi.org/10.1016/j.nbt.2019.02.003.