Vol. 78 No. 2 (2023)
Research Articles

The air quality benefits of electric vehicles’ adoption in the short food supply chain

Antonino Galati
Department of Agricultural, Food and Forest Sciences, University of Palermo
Bio
Nino Adamashvili
Department of Economics, University of Foggia
Bio
Demetris Vrontis
Department of Management, School of Business, University of Nicosia, Nicosia
Bio
Maria Crescimanno
Department of Agricultural, Food and Forest Sciences, University of Palermo
Bio

Published 2023-12-31

Keywords

  • Environmental cost,
  • food delivery,
  • logystics,
  • sustainable food supply chain,
  • carbon footprint,
  • Bactery electric vehicle
  • ...More
    Less

How to Cite

Galati , A., Adamashvili, N., Vrontis, D., & Crescimanno, M. (2023). The air quality benefits of electric vehicles’ adoption in the short food supply chain. Italian Review of Agricultural Economics (REA), 78(2), 67–77. https://doi.org/10.36253/rea-14412

Abstract

Concerns continue to rise about environmental sustainability and the impacts of traditional transportation systems. Exploring alternative solutions therefore becomes imperative. This paper aims to investigate the potential advantages of integrating battery electric vehicles into the agricultural short food supply chain with a specific focus on air quality improvements. In order to reach the research goal, this study gives a thorough and comparative environmental analysis based on a real-world test conducted under the EnerNETMob project financed by the InterregMed programme, in contrast to other studies that primarily relied on general parameters and simulations. This study illustrated that using an electric vehicle (EV), like the Nissan e-NV200, for short-distance transportation of agri-food products is not an environmentally sustainable solution instead of using a petrol-powered vehicle. However, as the distance travelled increases, the environmental impact of electric vehicles diminishes, surpassing that of internal combustion vehicles. This study holds significant theoretical, practical and policy implications that are worth considering.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. Aikins E., Ramanathan U. (2020). Key factors of carbon footprint in the UK food supply chains: A new perspective of life cycle assessment. International Journal of Operations & Production Management, 40(7-8): 945-970. DOI: https://doi.org/10.1108/IJOPM-06-2019-0478
  2. Alp O., Tan T., Udenio M. (2022). Transitioning to sustainable freight transportation by integrating fleet replacement and charging infrastructure decisions. Omega Elsevier, 109(C). DOI: https://doi.org/10.1016/j.omega.2022.102595
  3. Bieker G. (2021). A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars. International Council on Clean Transportation (ICCT).
  4. Canfora I. (2016). Is the short food supply chain an efficient solution for sustainability in the food market? Agriculture and Agricultural Science Procedia, 8: 402-407. DOI: https://doi.org/10.1016/j.aaspro.2016.02.036
  5. Canter N. (2022). Effect of electrification of light-duty vehicles on carbon dioxide emissions. Tribology and Lubrication Technology, 78(6): 28-29.
  6. Cao J., Chen X., Qiu R., Hou S. (2021). Electric vehicle industry sustainable development with a stakeholder engagement system. Technology in Society, 67, 101771. DOI: https://doi.org/10.1016/j.techsoc.2021.101771
  7. Car Emissions. (n.d.). https://www.car-emissions.com/cars/view/63582
  8. Coley D., Howard M., Winter M. (2011). Food miles: Time for a re-think? British Food Journal, 113(7): 919-934. DOI: https://doi.org/10.1108/00070701111148432
  9. Costa C.M., Barbosa J.C., Castro H., Gonçalves R., Lanceros-Méndez S. (2021). Electric vehicles: To what extent are environmentally friendly and cost-effective? Comparative study by European countries. Renewable and Sustainable Energy Reviews, 151, 111548. DOI: https://doi.org/10.1016/j.rser.2021.111548
  10. Cowell S., Parkinson S. (2003). Localisation of UK food production: An analysis using land area and energy as indicators. Agriculture, Ecosystems and Environment, 94: 221-236. DOI: https://doi.org/10.1016/S0167-8809(02)00024-5
  11. De Fazio M. (2016). Agriculture and sustainability of the welfare: The role of the short supply chain. Agriculture and Agricultural Science Procedia, 8: 461-466. DOI: https://doi.org/10.1016/j.aaspro.2016.02.044
  12. Deller S.C., Lamie D., Stickel M. (2017). Local foods systems and community economic development. Community Development, 48(5): 612-638. DOI: https://doi.org/10.1080/15575330.2017.1373136
  13. De Santis M., Silvestri L., Forcina A. (2022). Promoting electric vehicle demand in Europe: Design of innovative electricity consumption simulator and subsidy strategies based on well-to-wheel analysis. Energy Conversion and Management, 270(4), 116279. DOI: https://doi.org/10.1016/j.enconman.2022.116279
  14. DfT. (n.d.). Final Van Statistics April 2019 - March 2020 [Online].
  15. Edwards-Jones G. (2010). Reducing carbon footprints in food supply chains. EuroChoices, 9(3): 52. DOI: https://doi.org/10.1111/j.1746-692X.2010.00182.x
  16. Emilsson E., Dahllöf L. (2019). Lithium-Ion Vehicle Battery Production - Status 2019 on Energy Use, CO2 Emissions, Use of Metals, Products Environmental Footprint, and Recycling [Online].
  17. European Council. (2022). EC, [online]. Clean and sustainable mobility. Council of the European Union.
  18. Fevang E., Figenbaum E., Fridstrøm L., Halse A.H., Hauge K.E., Johansen B.G., Raaum O. (2021). Who goes electric? The anatomy of electric car ownership in Norway. Transportation Research Part D: Transport and Environment, 92, 102727. DOI: https://doi.org/10.1016/j.trd.2021.102727
  19. Fiore M. (2016). Direct selling in the wine sector: Lessons from cellars in Italy’s Apulia region. British Food Journal, 118(8): 1946-1959. DOI: https://doi.org/10.1108/BFJ-05-2016-0201
  20. Galati A., Adamashvili N., Crescimanno M. (2023). A feasibility analysis on adopting electric vehicles in the short food supply chain based on GHG emissions and economic costs estimations. Sustainable Production and Consumption, 36: 49-61. DOI: https://doi.org/10.1016/j.spc.2023.01.001
  21. Galati A., Crescimanno M., Vrontis D., Siggia D. (2020). Contribution to the sustainability challenges of the food-delivery sector: Findings from the Deliveroo Italy case study. Sustainability, 12(17), 7045. DOI: https://doi.org/10.3390/su12177045
  22. Galati A., Giacomarra M., Concialdi P., Crescimanno M. (2021). Exploring the feasibility of introducing electric freight vehicles in the short food supply chain: A multi-stakeholder approach. Case Studies on Transport Policy, 9(2): 950-957. DOI: https://doi.org/10.1016/j.cstp.2021.04.015
  23. Galati A., Migliore G., Thrassou A., Schifani G., Rizzo G., Adamashvili N., Crescimanno M. (2022). Consumers’ Willingness to Pay for Agri-Food Products Delivered with Electric Vehicles in the Short Supply Chains. FIIB Business Review, 12(2). DOI: https://doi.org/10.1177/23197145221112743
  24. Giacomarra M., Tulone A., Crescimanno M., Galati A. (2019). Electric mobility in the Sicilian short food supply chain. Studies in Agricultural Economics, 121: 84-93. DOI: https://doi.org/10.7896/j.1907
  25. Haase M., Wulf C., Baumann M., Ersoy H., Koj J.C., Harzendorf F., Mesa Estrada L.S. (2022). Multi-criteria decision analysis for prospective sustainability assessment of alternative technologies and fuels for individual motorized transport. Clean Technologies and Environmental Policy, 24(10): 3171-3197. DOI: https://doi.org/10.1007/s10098-022-02407-w
  26. Hawkins T.R., Singh B., Majeau-Bettez G., Strømman A.H. (2013). Comparative environmental life cycle assessment of conventional and electric vehicles. Journal of Industrial Ecology, 17(1): 53-64. DOI: https://doi.org/10.1111/j.1530-9290.2012.00532.x
  27. Hendry L.C., Stevenson M., MacBryde J., Ball P., Sayed M., Liu L. (2018). Local food supply chain resilience to constitutional change: The Brexit effect. International Journal of Operations & Production Management, 39(3): 429-453. DOI: https://doi.org/10.1108/IJOPM-03-2018-0184
  28. Hoekstra A. (2019). The Underestimated Potential of Battery Electric Vehicles to Reduce Emissions. Joule, 3(6): 1412-1414. DOI: https://doi.org/10.1016/j.joule.2019.06.002
  29. IEA (2022). Transport: Improving the sustainability of passenger and freight transport.
  30. ISPRA (2021). Indicatori di efficienza e decarbonizzazione del sistema energetico nazionale e del settore elettrico 2021.
  31. Joshi A., Sharma R., Baral B. (2022). Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle, and fuel cell electric vehicle in Nepal. Journal of Cleaner Production, 379, 134407. DOI: https://doi.org/10.1016/j.jclepro.2022.134407
  32. Kawamoto R., Mochizuki H., Moriguchi Y., Nakano T., Motohashi M., Sakai Y., Inaba A. (2019). Estimation of CO2 emissions of internal combustion engine vehicle and battery electric vehicle using LCA. Sustainability, 11(9), 2690. DOI: https://doi.org/10.3390/su11092690
  33. Kneafsey M., Venn L., Schmutz U., Balázs B., Trenchard L., Eyden-Wood T., Bos E., Sutton G., Blackett M. (2013). Short food supply chains and local food systems in the EU: A state of play of their socio-economic characteristics. JRC Scientific and Policy Reports, 123: 129. DOI: https://doi.org/10.2791/88784
  34. Lombardi A., Migliore G., Verneau F., Schifani G., Cembalo L. (2015). Are “good guys” more likely to participate in local agriculture? Food Quality and Preference, 45: 158-165. DOI: https://doi.org/10.1016/j.foodqual.2015.06.005
  35. Malak-Rawlikowska A., Majewski E., Wąs A., Borgen S.O., Csillag P., Donati M., Freeman R., Hoang V., Lecoeur J.L., Mancini L.C., Nguyen A., Saidi M., Tocco B., Torok A., Veneziani M., Vitterso G., Wavresky P. (2019). Measuring the economic, environmental, and social sustainability of short food supply chains. Sustainability, 11(15), 4004. DOI: https://doi.org/10.3390/su11154004
  36. Morris A., Kirwan J. (2011). Ecological embeddedness: An interrogation and refinement of the concept within the context of alternative food networks in the UK. Journal of Rural Studies, 27(3): 322-330. DOI: https://doi.org/10.1016/j.jrurstud.2011.03.004
  37. Nissan News. (n.d.). Nissan introduces improved e-NV200 with higher-capacity battery.
  38. Nowtricity (2022). Italy 2022.
  39. Nsamzinshuti A., Janjevic M., Rigo N., Ndiaye A.B. (2018). Short supply chains as a viable alternative for the distribution of food in urban areas? Investigation of the performance of several distribution schemes. In: Zeimpekis V., Aktas E., Bourlakis M., Minis I (eds.) Sustainable Freight Transport: Theory, Models, and Case Studies (pp. 99-119). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-62917-9_7
  40. Paciarotti C., Torregiani F. (2021). The Logistics of the Short Food Supply Chain: A Literature Review. Sustainable Production and Consumption, 26: 428-442. DOI: https://doi.org/10.1016/j.spc.2020.10.002
  41. Pipitone E., Caltabellotta S., Occhipinti L. (2021). A Life Cycle Environmental Impact Comparison between Traditional, Hybrid, and Electric Vehicles in the European Context. Sustainability, 13(19), 10992. DOI: https://doi.org/10.3390/su131910992
  42. Pirog R., Van Pelt T., Enshayan K., Cook E. (2001). Food, fuel, and freeways: An Iowa perspective on how far food travels, fuel usage, and greenhouse gas emissions. Leopold Center for Sustainable Agriculture, 209.
  43. Puricelli S., Costa D., Rigamonti L., Cardellini G., Casadei S., Koroma M.S., Messagie M., Grosso M. (2022). Life cycle assessment of innovative fuel blends for passenger cars with a spark-ignition engine: A comparative approach. Journal of Cleaner Production, 378, 134535. DOI: https://doi.org/10.1016/j.jclepro.2022.134535
  44. Schmit T.M., Jablonski B.B., Minner J., Kay D., Christensen L. (2017). Rural wealth creation of intellectual capital from urban local food system initiatives: Developing indicators to assess change. Community Development, 48(5): 639-656. DOI: https://doi.org/10.1080/15575330.2017.1354042
  45. Schulthoff M., Kaltschmitt M., Balzer C., Wilbrand K., Pomrehn M. (2022). European road transport policy assessment: A case study for Germany. Environmental Sciences Europe, 34(1): 1-21. DOI: https://doi.org/10.1186/s12302-022-00663-7
  46. S&P Global. (2022). Average age of vehicles in the US increases to 12.2 years.
  47. Torquati B., Taglioni C., Cavicchi A. (2015). Evaluating the CO2 emission of the milk supply chain in Italy: An exploratory study. Sustainability, 7(6): 7245-7260. DOI: https://doi.org/10.3390/su7067245
  48. United Nations. (n.d.). 2030 Agenda for Sustainable Development.
  49. Validi S., Bhattacharya A., Byrne P.J. (2014). A case analysis of a sustainable food supply chain distribution system—A multi-objective approach. International Journal of Production Economics, 152: 71-87. DOI: https://doi.org/10.1016/j.ijpe.2014.02.003
  50. Vitali A., Grossi G., Martino G., Bernabucci U., Nardone A., Lacetera N. (2018). Carbon footprint of organic beef meat from farm to fork: A case study of short supply chain. Journal of the Science of Food and Agriculture, 98(14): 5518-5524. DOI: https://doi.org/10.1002/jsfa.9098
  51. Winkler J.K., Grahle A., Syré A.M., Martins-Turner K., Göhlich D. (2022). Fuel cell drive for urban freight transport in comparison to diesel and battery electric drives: A case study of the food retailing industry in Berlin. European Transport Research Review, 14(1): 2. DOI: https://doi.org/10.1186/s12544-022-00525-6