L' intelligenza artificiale per la città a 15 minuti: una proposta per innovare la pianificazione dei servizi a Milano
Published 2026-01-07
Keywords
- urban regeneration,
- tools and techniques,
- spatial planning
How to Cite
Copyright (c) 2026 Francesco Berni, Andrea Bartolini

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract
La ‘città dei 15 minuti’ rappresenta una rilettura di un paradigma disciplinare consolidato, rilanciato durante la pandemia come risposta alla necessità di prossimità nei sistemi urbani. In Europa, molte sperimentazioni hanno puntato su mobilità sostenibile e spazi pubblici, mentre più complessa si è rivelata l’integrazione di servizi, ostacolata dall’assenza di strumenti empirici e dati interoperabili. La sfida futura consiste nel superare gli standard urbanistici tradizionali adottando approcci data driven per garantire servizi accessibili e massimizzare l’impatto sociale. Il contributo esplora il potenziale dell’intelligenza artificiale come leva per innovare la pianificazione dei servizi a partire dal caso di Milano. La città offre un ambito di indagine rilevante in cui l’ente locale sperimenta nuovi strumenti di pianificazione dei servizi in contesto connotato da un aspro dibattito pubblico e inchieste concentrate sul rapporto tra trasformazioni private e interessi collettivi.
The ‘15-minute city’ represents a reinterpretation of a consolidated disciplinary paradigm, rediscovered during the pandemic as a response to the need for proximity in urban systems. In Europe, many experiments have focused on sustainable mobility and public spaces, while the integration of services has proven more complex, hindered by the lack of empirical tools and interoperable data. The future challenge lies in moving beyond traditional urban planning standards by adopting data-driven approaches to ensure accessible services and maximize social impact. This contribution explores the potential of artificial intelligence as a lever to innovate service planning, starting from the case of Milan. The city provides a relevant field of investigation, where the local authority is experimenting with new service planning tools in a context marked by heated public debate and inquiries centered on the relationship between private transformations and collective interests.
Downloads
References
- Aracri R.M., Radini R., Scannapieco M., Tosco L. 2018, Using ontologies for official statistics: the Istat experience, in I. Garrigós, M. Wimmer (a cura di), Current Trends in Web Engineering, Lecture Notes in Computer Science, Springer, Cham, pp. 166–72, doi: 10.1007/978-3-319-74433-9_15.
- Balducci A., Fedeli V., Curci F. 2017, Oltre la metropoli, Guerrini e Associati, Milano.
- Barbacetto G. 2025, Contro Milano. Ascesa e caduta di un modello di città, Paper First, Roma.
- Batty M. 1971, Modelling cities as dynamic systems, «Nature», 231(5303), pp. 425–28, doi:10/fgdwvd.
- Batty M. 2013, New science of cities, Mit Press, Cambridge US.
- Batty M. 2020, Defining complexity in cities, in D. Pumain (a cura di), Theories and models of urbanization, Lecture Notes in Morphogenesis, Springer, Cham, pp. 13–26, doi:10.1007/978-3-030-36656-8_2.
- Benevolo L., 1999, Storia dell’architettura moderna, Laterza, Bari
- Berni F., Castellanza S., Monti B. 2025, Progettare la prossimità: processi data driven nel disegno dei servizi urbani a Milano, «Atti XXVI Conferenza SIU Napoli», V.4, Planum Publisher.
- Brenner N. 2016, Stato, spazio e urbanizzazione, Guerrini e Associati, Milano.
- Bonomi A. 2008, Milano ai tempi della moltitudine, Mondadori, Milano.
- Chadzynski A., Krdzavac N., Farazi F., Lim M.Q., Li S., Grišiūtė A., Herthogs P., et al. 2021, Semantic 3D city database — an enabler for a dynamic geospatial knowledge graph, «Energy and AI», 6, 100106, doi: 10.1016/j.egyai.2021.100106.
- Chadzynski A., Li S., Grišiūtė A., Chua J., Hofmeister M., Yan J., Tai H.Y., et al. 2023, Semantic 3D city interfaces — intelligent interactions on dynamic geospatial knowledge graphs, «Data-Centric Engineering», 4, e20, doi: 10.1017/dce.2023.14.
- Chadzynski A., Li S., Grišiūtė A., Farazi F., Lindberg C., Mosbach S., Herthogs P., Kraft M. 2022, Semantic 3D city agents — an intelligent automation for dynamic geospatial knowledge graphs, «Energy and AI», 8, 100137, doi: 10.1016/j.egyai.2022.100137.
- Chaillou S. 2021, AI and architecture: an experimental perspective, in The Routledge Companion to Artificial Intelligence in Architecture, Routledge, London, 22 pp.
- Chase J., Crawford M., Kaliski J. 1999, Everyday urbanism, Monacelli Press, New York.
- Cities Knowledge Graph. 2023, https://fcl.ethz.ch/research/research-projects/cities-knowledge-graph.html (30/08/2025).
- Diappi L. 2009, Rigenerazione urbana e ricambio sociale, Angeli, Milano
- Donolo C. 1997, L'intelligenza delle istituzioni, Feltrinelli, Milano
- European Commission – Joint Research Centre. 2020, AI Watch: Defining Artificial Intelligence: Towards an operational definition and taxonomy of artificial intelligence, Publications Office, Luxembourg, https://data.europa.eu/doi/10.2760/382730 (30/08/2025).
- Gainsforth, S. 2025, L’Italia senza casa: Politiche abitative per non morire di rendita, Laterza, Roma.
- Granata E., Lanzani A., Longo A., Coppola A. 2024, Necrologio per l’urbanistica? Se per cercare di salvare Milano si mette a rischio tutta l’Italia, «Gli Stati Generali», Milano.
- Grišiūtė A., Silvennoinen H., Li S., Chadzynski A., Raubal M., Kraft M., von Richthofen A., Herthogs P. 2023, A semantic spatial policy model to automatically calculate allowable gross floor areas in Singapore, in M. Turrin, C. Andriotis, A. Rafiee (a cura di), Computer-Aided Architectural Design. INTERCONNECTIONS: Co-Computing Beyond Boundaries, Communications in Computer and Information Science, Springer, Cham, pp. 455–69, doi: 10.1007/978-3-031-37189-9_30.
- Grisiute, A., Wiedemann, N., Herthogs, P., & Raubal, M. (2024). An ontology-based approach for harmonizing metrics in bike network evaluations. Computers, Environment and Urban Systems, 113, 102178. https://doi.org/10.1016/j.compenvurbsys.2024.102178
- Grišiūtė A., Raubal M., Herthogs P. 2025, 3D land use planning: making future cities measurable with ontology-driven representations of planning regulations, «AGILE: GIScience Series», 6, pp. 1–17, doi:10.5194/agile-giss-6-3-2025.
- Hall P. 1996, Cities of Tomorrow: An Intellectual History of Urban Planning and Design in the Twentieth Century, Blackwell, Oxford.
- Hitzler P., Krötzsch M., Rudolph S. 2009, Foundations of semantic web technologies, CRC Press, Boca Raton.
- Hu Y., Lv Z., Wu J., Janowicz K., Zhao X., Yu B. 2015, A multistage collaborative 3D GIS to support public participation, «International Journal of Digital Earth», 8(3), pp. 212–34, doi:10.1080/17538947.2013.866172.
- Katsumi M., Fox M. 2020, iCity transportation planning suite of ontologies.
- Lees L. 2010, Super-gentrification: the case of Brooklyn Heights, New York City, Routledge, London.
- Lim M.Q., Wang X., Inderwildi O., Kraft M. 2022, The World Avatar — a world model for facilitating interoperability, in O. Inderwildi, M. Kraft (a cura di), Intelligent Decarbonisation, Lecture Notes in Energy, Springer, Cham, pp. 39–53, doi:10.1007/978-3-030-86215-2_4.
- Manzini E. 2018, Politiche del quotidiano. Edizioni di Comunità, Roma
- Minton, A. 2017, Big Capital: Who is London for?, Penguin Books, London.
- Moreno C. 2024, La città dei 15 minuti. Per una cultura urbana democratica, Add editore, Torino
- Ostrom E. 1990, Governing the commons: the evolutions of Institutions for collective actions, Cambridge University Press, Cambridge.
- Perry C. A. 1929, Regional Survey of New York and its Environs, Neighborhood and Community Planning, New York, Vol. VII.
- Sarker I.H. 2022, AI-based modeling: techniques, applications and research issues towards automation, intelligent and smart systems, «SN Computer Science», 3(2), 158, doi:10.1007/s42979-022-01043-x.
- Sassen S. 1991, The global city, Princeton University Press, Princeton (NJ).
- Scott P. 1999, The research-policy gap, «Journal of Education Policy», 14(3), pp. 317–37.
- Silvennoinen H., Chadzynski A., Farazi F., Grišiūtė A., Shi Z., von Richthofen A., Cairns S., et al. 2023, A semantic web approach to land use regulations in urban planning: the OntoZoning ontology of zones, land uses and programmes for Singapore, «Journal of Urban Management», doi: 10.1016/j.jum.2023.02.002.
- Schrotter G., Hürzeler C. 2020, The digital twin of the city of Zurich for urban planning, «PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science», 88(1), pp. 99–112, doi:10.1007/s41064-020-00092-2.
- Stead D. 2021, Conceptualizing the policy tools of spatial planning, «Journal of Planning Literature», 36(3), pp. 297–311, doi: 10.1177/0885412221992283.
- Stojanovski T. 2018, City information modelling (CIM) and urban design – morphological structure, design elements and programming classes in CIM, in «Proceedings of eCAADe», Łódź, pp. 507–16, doi: 10.52842/conf.ecaade.2018.1.507.
- Stratigea A., Papadopoulou C.-A., Panagiotopoulou M. 2015, Tools and technologies for planning the development of smart cities, «Journal of Urban Technology», 22(2), pp. 43–62.
- Tomlinson R.F. 1969, A geographic information system for regional planning, «Journal of Geography (Chigaku Zasshi)», 78(1), pp. 45–48, doi: 10.5026/jgeography.78.45.
- Tozzi L. 2023, L’invenzione di Milano. Culto della comunicazione e politiche urbane, Cronopio, Napoli.
- Von Richthofen A., Herthogs P., Kraft M., Cairns S. 2022, Semantic city planning systems (SCPS): a literature review, «Journal of Planning Literature», 37(1), pp. 1–18, doi: 10.1177/08854122211068526.