2026: Special Issue. Urban and Territorial Resilience. Urbanism Facing Crisis
Special Issue. Urban and Territorial Resilience. Urbanism Facing Crisis

Infrastrutture verdi urbane ed offerta di servizi ecosistemici: uno studio sulla Functional Urban Area della Città di Cagliari

Federica Isola
Department of Civil and Environmental Engineering, and Architecture,University of Cagliari
Sabrina Lai
Department of Civil and Environmental Engineering, and Architecture – University of Cagliari
Federica Leone
Department of Civil and Environmental Engineering, and Architecture – University of Cagliari
Corrado Zoppi
Department of Civil and Environmental Engineering, and Architecture – University of Cagliari

Published 2026-01-29

Keywords

  • urban green infrastructure,
  • ecosystem services,
  • urban ecological corridors,
  • functional urban area

How to Cite

Isola, F., Lai, S., Leone, F., & Zoppi, C. (2026). Infrastrutture verdi urbane ed offerta di servizi ecosistemici: uno studio sulla Functional Urban Area della Città di Cagliari. Contesti. Città, Territori, Progetti, 310–333. https://doi.org/10.36253/contest-16541

Abstract

Urban green infrastructure (UGI) is an interconnected system of natural and semi-natural spaces, such as green areas, open spaces, and water features, which are strategically planned to provide ecosystem services and address community needs. UGIs should be inclusive and enhance human well-being, supporting biodiversity and facilitating access to natural resources. This study introduces a methodological framework for identifying UGIs, based on a taxonomic analysis of key ecosystem services (ES) essential to urban quality, including outdoor recreation, flood risk management, carbon capture and storage, habitat quality, and climate regulation. Furthermore, UGIs are modelled as complex networks composed of core areas, and urban ecological corridors. This approach is applied to the Functional Urban Area (FUA) of Cagliari in Italy. The findings indicate that areas with high levels of climate regulation, carbon storage and habitat quality are particularly well-suited for inclusion in UGI. While recreational potential is comparatively lower, it remains locally significant. On the other hand, flood mitigation zones demonstrate reduced connectivity due to urban impermeable surfaces.

Downloads

Download data is not yet available.

References

  1. Benati G., Calcagni F., Martellozzo F., Ghermandi A., Langemeyer J. 2024, Unequal access to cultural ecosystem services of green spaces within the city of Rome. A spatial social media-based analysis, «Ecosyst. Serv.», n. 66, 101594. https://doi.org/10.1016/j.ecoser.2023.101594.
  2. Breuste J.H. 2021, The Green City: From a vision to a concept from national to European perspectives. In Arcidiacono, A., Ronchi, S. (a cura di), Ecosystem Services and Green Infrastructure – Perspectives from Spatial Planning in Italy, Springer: Cham, Switzerland, pp. 29–43.
  3. Buechel M., Slater L., Dadson, S. 2024, Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain, «Hydrol. Earth Syst. Sci.», n. 28, pp. 2081–2105. https://doi.org/10.5194/hess-28-2081-2024.
  4. Byron R.P., Bera A.K. 1983, Linearised estimation of nonlinear single equation functions, «Int. Econ. Rev.», n. 24(1), pp. 237–248. https://doi.org/10.2307/2526125.
  5. Cannas I., Zoppi C. 2017, Ecosystem services and the Natura 2000 Network: A study concerning a green infrastructure based on ecological corridors in the metropolitan City of Cagliari. In Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A. (a cura di), 17th International Conference on Computational Science and Its Applications (ICCSA 2017), Lecture Notes in Computer Sciences Series, Springer: Cham, Switzerland, vol. 10409, pp. 379–400. https://doi.org/10.1007/978-3-319-62407-5_27.
  6. Cohen D.A., McKenzie T.L., Sehgal A., Williamson S., Golinelli D., Lurie N. 2007, Contribution of public parks to physical activity, «Am. J. Public Health», n. 97, pp. 509–514. https://doi.org/10.2105/AJPH.2005.072447.
  7. Concepción E.D. 2021, Urban sprawl into Natura 2000 network over Europe, «Conserv. Biol.», n. 35(4), pp. 1063–1072. https://doi.org/10.1111/cobi.13687.
  8. Cozzi M., Prete C., Viccaro M., Sijtsma F., Veneri P., Romano S. 2022, Understanding the role of nature in urban-rural linkages: Identifying the potential role of rural nature-based attractive clusters that serve human well-being, «Sustainability», n. 14, 11856. https://doi.org/10.3390/su141911856.
  9. Eggermont H., Balian E., Azevedo J.M.N., Beumer V., Brodin T., Claudet J., Fady B., Grube M., Keune H., Lamarque P., Reuter K., Smith M., van Ham C., Weisser W.W., Le Roux X. 2015, Nature–based solutions: new influence for environmental management and research in Europe, «GAIA Journal», n. 24(4), pp. 243–248. https://doi.org/10.14512/gaia.24.4.9.
  10. European Commission (EC) 2013, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Green Infrastructure—Enhancing Europe’s Natural Capital. SWD (2013) 155 Final, https://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF (06/2025).
  11. European Commission, Directorate-General, Joint Research Centre 2023, The Landscape Mosaic, https://ies-ows.jrc.ec.europa.eu/gtb/GTB/psheets/GTB-Pattern-LM.pdf  (06/2025).
  12. Ferretti V., Pomarico S. 2013, An integrated approach for studying the land suitability for ecological corridors through spatial multicriteria evaluations, «Environ. Dev. Sustain. », n. 15, pp. 859–885. https://doi.org/10.1007/s10668-012-9400-6.
  13. Floris M., Zoppi C. 2020, Ecosystem services and spatial planning: A study on the relationship between carbon sequestration and land-taking processes, «Arch. Studi Urbani Reg.», n. 51(127, supplement), pp. 11–33. https://doi.org/10.3280/ASUR2020-127-S1002.
  14. Gao J., Gong J., Yang J., Li J., Li S. 2022, Measuring Spatial Connectivity between patches of the heat source and sink (SCSS): A new index to quantify the heterogeneity impacts of landscape patterns on land surface temperature, «Landsc. Urban Plan. », n. 217, 104260. https://doi.org/10.1016/j.landurbplan.2021.104260.
  15. He J., Huanga J., Li C. 2017, The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model, «Ecol. Model.», n. 366, pp. 58–67. https://doi.org/10.1016/j.ecolmodel.2017.10.001.
  16. He J., Shi Y., Xu L., Lu Z., Feng M. 2024, An investigation on the impact of blue and green spatial pattern alterations on the urban thermal environment: A case study of Shanghai, «Ecol. Indic.», n. 158, 111244. https://doi.org/10.1016/j.ecolind.2023.111244.
  17. Hilty J., Worboys G.L., Keeley A., Woodley S., Lausche B., Locke H., Car, M., Pulsford I., Pittock J., White J.W., Theobald D.M., Levine J., Reuling M., Watson J.E.M., Ament R., Tabor G.M. 2020, Guidelines for conserving connectivity through ecological networks and corridors. Best Practice Protected Area. Guidelines Series no. 30. Gland, Switzerland, IUCN.
  18. Isola F., Lai S., Leone F., Zoppi C. 2022, Strengthening a regional green infrastructure through improved multifunctionality and connectedness: Policy suggestions from Sardinia, Italy, «Sustainability», n. 14(15), 9788. https://doi.org/10.3390/su1415978.
  19. Isola F., Leone F., Zoppi C. 2022, Mapping of ecological corridors as connections between protected areas: A study concerning Sardinia, Italy, «Sustainability», n. 14(11), 6588. https://doi.org/10.3390/su14116588.
  20. Jordán A., Martínez-Zavala L., Bellinfante N. 2008, Heterogeneity in soil hydrological response from different land cover types in southern Spain, «Catena», n. 74, pp. 137–143. https://doi.org/10.1016/j.catena.2008.03.015.
  21. Kirby M.G., Scott A.J., Walsh C.L. 2023, Translating policy to place: Exploring cultural ecosystem services in areas of Green Belt through participatory mapping, «Ecosystems and People», n. 19(1). https://doi.org/10.1080/26395916.2023.2276752.
  22. Kourdounouli C., Jönsson A.M. 2020, Urban ecosystem conditions and ecosystem services. A comparison between large urban zones and city cores in the EU, «J. Environ. Plann. Man.», n. 63(5), pp. 798–817. https://doi.org/10.1080/09640568.2019.1613966.
  23. Krosby M., Breckheimer I., John Pierce D., Singleton P.H., Hall S.A., Halupka K.C., Gaines, W.L. Long, R.A., McRae B.H., Cosentino B.L., Schuett-Hames J.P. 2015, Focal species and landscape “naturalness” corridor models offer complementary approaches for connectivity conservation planning, «Landscape Ecol.», n. 30, pp. 2121–2132. https://doi.org/10.1007/s10980-015-0235-z.
  24. Lai S., Leone F., Zoppi C. 2018, Implementing green infrastructures beyond protected areas, «Sustainability», n. 10(10), 3544. https://doi.org/10.3390/su10103544.
  25. LaPoint S., Balkenhol N., Hale J., Sadler J., van der Ree R. 2015, Ecological connectivity research in urban areas, «Funct. Ecol.», n. 29, pp. 868–878. https://doi.org/10.1111/1365-2435.12489.
  26. Larondelle N., Haase D. 2013, Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities, «Ecol. Indic.», n. 29, pp. 179–190. https://doi.org/10.1016/j.ecolind.2012.12.022.
  27. Larondelle N., Lauf S. 2016, Balancing demand and supply of multiple urban ecosystem services on different spatial scales, «Ecosystem Services», n. 22, pp. 18–31. https://doi.org/10.1016/j.ecoser.2016.09.008.
  28. Li H., Chen H., Wu M., Zhou K., Zhang X., Liu, Z. 2022, A dynamic evaluation method of urban ecological networks combining Graphab and the FLUS Model, «Land», n. 11(12), 2297. https://doi.org/10.3390/land11122297.
  29. Liquete C., Kleeschulte S., Dige G., Maes J., Grizzetti B., Olah B., Zulian G. 2015, Mapping green infrastructure based on eco-system services and ecological networks: A Pan–European case study, «Environ. Sci. Policy», n. 54, pp. 268–280. https://doi.org/10.1016/j.envsci.2015.07.009.
  30. Liu S., Shen P., Huang Y., Jiang L., Feng Y. 2022, Spatial distribution changes in nature-based recreation service supply from 2008 to 2018 in Shanghai, China, «Land», n. 11, 1862. https://doi.org/10.3390/land11101862.
  31. Lv Y., Zhang L., Li P., He H., Ren X., Zhang M. 2023, Ecological restoration projects enhanced terrestrial carbon sequestration in the karst region of Southwest China, «Front. Ecol. Evol», n. 11, 1179608. https://doi.org/10.3389/fevo.2023.1179608.
  32. Maes J., Zulian G., Günther S., Thijssen M., Raynal J. 2019, Enhancing Resilience of Urban Ecosystems through Green Infrastructure. Final Report, EUR 29630 EN, Publications Office of the European Union: Luxembourg. https://doi.org/10.2760/689989.
  33. Marando F., Heris M.P., Zulian G., Udías A., Mentaschi L., Chrysoulakis N., Parastatidis D., Maes J. 2022, Urban heat island mitigation by green infrastructure in European Functional Urban Areas, «Sustain. Cities Soc. », n. 77, 103564. https://doi.org/10.1016/j.scs.2021.103564.
  34. McDonald R.I., Aronson M.F.J., Beatley T., Beller E., Bazo M., Grossinger R., Jessup K., Mansur A.V., Puppim de Oliveira J.A., Panlasigui S., Burg J., Pevzner N., Shanahan D., Stoneburner L., Rudd A., Spotswood E. 2023, Denser and greener cities: Green interventions to achieve both urban density and nature, «People and Nature», n. 5, pp. 84–102. https://doi.org/10.1002/pan3.10423.
  35. Nedkov S., Burkhard B. 2012, Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol. «Indic.», 21, 67–79. https://doi.org/10.1016/j.ecolind.2011.06.022.
  36. Peng J., Zhao H., Liu Y. 2017, Urban ecological corridors construction: A review, «Acta Ecologica Sinica», n. 37, pp. 23–30. https://doi.org/10.1016/j.chnaes.2016.12.002.
  37. Richards D., Etherington T.R., Herzig A., Lavorel S. 2024, The importance of spatial configuration when restoring intensive production landscapes for biodiversity and ecosystem service multifunctionality, «Land», n. 13(4), 460. https://doi.org/10.3390/land13040460.
  38. Sallustio L., De Toni A., Strollo A., Di Febbraro M., Gissi E., Casella L., Geneletti D., Munafò M., Vizzarri M., Marchetti M. 2017, Assessing habitat quality in relation to the spatial distribution of protected areas in Italy, «J. Environ. Manag.», n. 201, pp. 129–137. https://doi.org/10.1016/j.jenvman.2017.06.031.
  39. Sandström U.F. 2002, Green infrastructure planning in urban Sweden, «Plann. Pract. Res.», n. 17(4), pp. 373–385. https://doi.org/10.1080/02697450216356.
  40. Sebastiani A., Fares S. 2023, Spatial prioritization of ecosystem services for land conservation: The case study of central Italy, «Forests», n. 14, 145. https://doi.org/10.3390/f14010145.
  41. Song Z., Liu W. 2024, Changes in the attraction area and network structure of recreation flows in urban green, blue and grey spaces under the impact of the COVID-19 pandemic, «Cities», n. 146, 104744. https://doi.org/10.1016/j.cities.2023.104744.
  42. Stewart D., Canfield E., Hawkins R. 2012, Curve Number determination methods and uncertainty in hydrologic soil groups from semiarid watershed data, «J. Hydrol. Eng.», n. 17(11), pp. 1180–1187. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000452.
  43. Suárez M., Barton D.N., Cimburova Z., Rusch G.M., Gómez-Baggethun E., Onaindia M. 2020, Environmental justice and outdoor recreation opportunities: A spatially explicit assessment in Oslo metropolitan area, Norway, «Environ. Sci. Policy», n. 108, pp. 133–143. https://doi.org/10.1016/j.envsci.2020.03.014.
  44. Tzoulas K., Korpela K., Venn S., Yli-Pelikonen V., Kaźmierczak A., Niemela J., James P. 2007, Promoting ecosystem and hu-man health in urban areas using green infrastructure: a literature review, «Landsc. Urban Plan.», n. 81(3), 167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001.
  45. Valente D., Marinelli M.V., Lovello E.M., Giannuzzi C.G., Petrosillo I. 2022, Fostering the resiliency of urban landscape through the sustainable spatial planning of green spaces, «Land», n. 11(3), 367. https://doi.org/10.3390/land11030367.
  46. Walmsley A. 2006, Greenways: multiplying and diversifying in the 21st century, «Landsc. Urban Plan.», n. 76(1-4), 252–290. https://doi.org/10.1016/j.landurbplan.2004.09.036.
  47. Wolman A.L., Couper E.A. 2003, Potential consequences of linear approximation in economics. Federal Reserve Bank Economic Quartely, n. 11, pp. 51–67. https://www.richmondfed.org/-/media/ RichmondFedOrg /publications/research/ economic_quarterly/ 2003/winter/pdf/wolman.pdf (06/2025).
  48. Xu H., Plieninger T., Primdahl J. 2019, A systematic comparison of cultural and ecological landscape corridors in Europe, «Land», n. 8, 41. https://doi.org/10.3390/land8030041.
  49. Zhang M., Wang K., Liu H., Zhang C., Wang J., Yue Y., Qi X. 2015, How ecological restoration alters ecosystem services: an analysis of vegetation carbon sequestration in the karst area of northwest Guangxi, China, «Environ Earth Sci.», n. 74, pp. 5307–5317. https://doi.org/10.1007/s12665-015-4542-0.
  50. Zhang R., Zhang Q., Zhang L., Zhong Q. 2023, Impact of spatial structure on the functional connectivity of urban ecological corridors based on quantitative analysis. «Urban For. Urban Green.», n. 89, 128121. https://doi.org/10.1016/j.ufug.2023.128121.
  51. Zhang Y., Wang Y., Ding N., Yang X. 2023, Assessing the contributions of urban green space indices and spatial structure in mitigating urban thermal environment. «Remote Sens.», n. 15(9), 2414. https://doi.org/10.3390/rs15092414.
  52. Zhao L., Li T., Przybysz A., Liu H., Zhang B., An W., Zhu C. 2023, Effects of urban lakes and neighbouring green spaces on air temperature and humidity and seasonal variabilities. «Sustain. Cities Soc.», n. 91.
  53. Zoppi C. 2012, Valutazione come sostegno all’efficacia del piano, in Zoppi C. (a cura di), Valutazione e pianificazione delle trasformazioni territoriali nei processi di governance ed e-governance – Sostenibilità ed e-governance nella pianificazione del territorio, FrancoAngeli, Milano, pp. 13–33.