2026: Special Issue. Urban and Territorial Resilience. Urbanism Facing Crisis
Special Issue. Urban and Territorial Resilience. Urbanism Facing Crisis

Negotiating between the urban landscape and the domestic space: adaptive climates in Ostiense (Rome)

Giordana Panella
Università degli Studi di Roma Tre

Published 2026-01-29

Keywords

  • urban heat island,
  • climate change,
  • comfort,
  • energy landscape

How to Cite

Panella, G. (2026). Negotiating between the urban landscape and the domestic space: adaptive climates in Ostiense (Rome). Contesti. Città, Territori, Progetti, 422–443. https://doi.org/10.36253/contest-16538

Abstract

Technological rationalization of recent decades has definitively dissociated the management of comfort from its context. The "passivation" and "efficiency" of spaces of everyday life have led to a technological setup capable of altering temperature, lighting, and ventilation to achieve a standard, rather than a perceptive level of comfort. This "techno" functionalism, however, is neither neutral nor democratic. By looking at the consumption patterns in the Mediterranean area, energy consumption increases significantly during the summer due to heat waves and the Urban Heat Island (UHI) effect, caused by impermeable surfaces, limited vegetation, and poor urban ventilation. The widespread use of cooling and ventilation systems leads to high energy demand, with environmental and economic consequences. However, access to these systems is not guaranteed for everyone, especially for those living in energy poverty, renters, or people in precarious housing conditions. Urban policies often prioritize technological models such as Positive Energy Districts and Near Zero Energy Buildings, which are frequently unsuitable for the existing building stock and more accessible in countries with greater investment capacity, thus reinforcing disparities between Northern and Southern Europe. Working with the actual capacity for renewable energy production, energy flexibility, and energy efficiency within given urban contexts is the perspective that interests PEDFORALL, an European research project deeply connected to the specific context of Ostiense, a neighborhood adjacent to the city centre of Rome.  Based on the recognition that current energy adaptation strategies have little room to take root in a district such as Ostiense, this contribution proposes a number of strategies for energy transition which are elaborated from the specificities of the site: analyses span from the domestic energy behaviors associated to a low-performing building stock, the quantity and quality presence of vegetation and wet areas, the geographies of paving and building materials, wind strengths and directions. The result of the design exploration offers a possible way to adapt to the changing climatic conditions and to enhance the opportunities to reduce energy use. Like the analyses, the configurations that attempt to spatialise the possibilities of energy-climate resilience work at very different scales, from the domestic space to the street, to the vacant lot, up to the level of the river park crossing the area. They are certainly not ready-made answers, but rather keys to understanding and discussing the adaptability of existing parts of the city.

Downloads

Download data is not yet available.

References

  1. Akbari H., Pomerants M., Taha H. 2001, Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation, <>, vol. 70, n. 3, pp. 259-310
  2. Areti S.p.a. 2024, Piano Resilienza 2024, Areti S.p.a., Roma.
  3. Asdrubali F., Lelo K., Monni S., Roncone M., Tomassi F. 2022, Le isole di calore nei quartieri di Roma, <>, anno XIV, n. 23, sem. 1.
  4. Asdrubali F., De Lieto Vollaro R., Lelo K., Monni S., Roncone M., Tomassi F. 2023, La povertà energetica a Roma: un’analisi dei consumi di energia elettrica nelle 155 Zone Urbanistiche, <>
  5. Becchetti L., Becchetti C., Naso F. 2022, Rinnovabili Subito: una proposta per la nostra indipendenza energetica, pp. 20.
  6. Boni S. 2014, Homo comfort. Milano: Elèuthera.
  7. Calder B. 2022, Architettura ed energia: dalla preistoria all’emergenza climatica, Einaudi.
  8. Carrosio G., Magnani N. 2022, Understanding the Energy Transition. Civil society, territory and inequality in Italy, Palgrave Macmillan.
  9. Carrosio G. 2021, Povertà energetica: le politiche ambientali alla prova della giustizia sociale, <>, n.2.
  10. Clerici Maestosi P., Salvia M.; Pietrapertosa F., Romagnoli, F., Pirro M. 2024, Implementation of Positive Energy Districts in European Cities: A Systematic Literature Review to Identify the Effective Integration of the Concept into the Existing Energy Systems, <>, vol. 17, n. 3, 2024, art. 707, DOI: https://doi.org/10.3390/en17030707
  11. Comune di Roma 2023, Piano Clima Roma, Roma Capitale.
  12. Davoudi S. 2012, Resilience: a bridging concept or a dead end?, << Planning, Theory and Practice>>, vol. 13.
  13. Fabian L., Magnabosco G. 2019, Albedo Urbis. Bianchezza e capacità adattiva dei centri storici all’isola di calore, <>, “Trasformazioni Urbane e Governo del Territorio. Un progetto per l’Italia”, Bari, 6–8 giugno 2019, Atti della conferenza.
  14. Fawzi Arrar H., Kaoula D., Santamouris M., Foufa-Abdessemed A., Emmanuel R., Elhadi Matallah M., Ahriz A., Attia S. (2024), “Coupling of different nature base solutions for pedestrian thermal comfort in a Mediterranean climate”.
  15. Filpa A., Ombuen S. (2014), “La carta della vulnerabilità climatica di Roma 1.0”, <>,n. 5, pp. 47-58.
  16. Holling C. S. 1973, Resilience and stability of ecological systems, <>, vol.4, pp. 1-23
  17. Intergovernmental Panel on Climate Change (IPCC) 2001, Climate Change 2001: Impacts, Adaptation, and Vulnerability, Cambridge University Press, Cambridge.
  18. ISPRA 2017, Piano Nazionale di Adattamento ai Cambi Climatici , Ispra, Roma.
  19. Lefebvre H. 1973, La rivoluzione urbana, Armando Editori, Roma, pp. 7-29
  20. Legambiente 2019, Il clima è già cambiato, ora è tempo di nuove politiche urbane, Osservatorio CittàClima.
  21. Legambiente 2020, Città sempre più calde, Osservatorio CittàClima.
  22. Mancuso S. 2023, Fitopolis, la città vivente, Laterza.
  23. Monni S., Lelo K., Tomassi F. 2021, Le sette Rome. La capitale delle disuguaglianze raccontata in 29 mappe, Donzelli Editore.
  24. Oke T.R., Mills G., Christen A., Voogt J.A. 2017, Urban Climates, Cambridge University Press.
  25. Panella G., Scarascia Mugnozza G. 2023, Ostiense Bioclimatica. Strategie per la transizione energetica urbana, Università degli Studi di Roma Tre. non pubblicato.
  26. Ranzato M., Vanin F., Cristiano S. 2022, Il progetto PED4ALL a Roma, Bruxelles e Istanbul, <>, III serie, n. 4.
  27. Rahm P. 2023a, Climatic Architecture, Actar Publisher.
  28. Rahm P. 2023b, The Anthropocene Style, Head Publishing
  29. https://api.head-publishing.ch/uploads/HP_6_BLOC_EN_PDFWEB_6248fa031c.pdf
  30. Saraste F. 2024, Taking Stock of an Energy Transition, After Comfort: A user’s guide, E-Flux Architecture
  31. < https://www.e-flux.com/architecture/after-comfort/624788/taking-stock-of-an-energy-transition/>
  32. Scudo G. e Ochoa de la Torre J.M. 2003, Spazi verdi urbani, Sistemi Editoriali, Napoli.
  33. Shove E. 2002, Converging Conventions of Comfort, Cleanliness and Convenience, Department of Sociology, Lancaster University, Lancaster.
  34. Sproken-Smith R.A. 1994, Energetics and cooling in urban parks, Ph.D. Thesis, The University of British Columbia, Vancouver.
  35. Sproken-Smith R.A., Oke T.R. 1999, Scale modelling of nocturnal cooling in urban parks, Kluwer Academic Publichers, Netherlands.
  36. Terna 2023, Piano di Sviluppo della Rete di Trasmissione Nazionale 2023, Terna S.p.A.
  37. < https://www.terna.it/it/sistema-elettrico/programmazione-territoriale-efficiente/piano-sviluppo-rete>