No. 2 (2023): Ecosystem-based Planning. The contribution of ecosystem services to Urban and Regional Planning innovation
Ricerche

The potential of different NBS policies to provide water flow regulation: a scenario-based assessment based on SWMM

Andrea Benedini
Politecnico di Milano

Published 2024-05-07

Keywords

  • nature-based solutions,
  • ecosystem services,
  • urban policies,
  • stormwater management,
  • source control

How to Cite

Benedini, A. (2024). The potential of different NBS policies to provide water flow regulation: a scenario-based assessment based on SWMM. Contesti. Città, Territori, Progetti, (2), 54–75. https://doi.org/10.36253/contest-14834

Abstract

Pluvial flooding is a growing concern in cities, exacerbated by climate change and rapid urbanisation. To address this issue, contemporary flood risk management focuses on urban resilience and the role of Nature-Based Solutions (NBS) in providing Water Flow Regulation (WFR). Using the Storm Water Management Model, this study explores the effectiveness of different NBS policies in a densely built municipality, Cormano (Italy). The research identifies green roofs and permeable pavements as key NBS options and assesses their performance under various rainfall conditions. Six policy scenarios are examined, ranging from 'direct' public policies, where the government directly implements NBS, to ‘enabling’ policies incentivising private stakeholders to adopt NBS. Results indicate that the ‘enabling’ policy yields the most significant WFR improvements in the case study. The study underscores the need for multifaceted, integrated, performance based NBS strategies. It emphasises the importance of ‘enabling’ policy instruments, such as regulations and incentives, in promoting NBS adoption.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. ADBPO, 2017. Progetto di Variante al PAI: Torrente Seveso da Lucino alla confluenza nella Martesana in Milano.
  2. Ashley, R.M., Balmforth, D.J., Saul, A.J., Blanskby, J.D., 2005. Flooding in the future – predicting climate change, risks and responses in urban areas. Water Science and Technology 52, 265–273. https://doi.org/10.2166/wst.2005.0142
  3. Azizi, K., Diko, S.K., Saija, L., Zamani, M.G., Meier, C.I., 2022. Integrated community-based approaches to urban pluvial flooding research, trends and future directions: A review. Urban Clim 44, 101237. https://doi.org/10.1016/j.uclim.2022.101237
  4. Baker, D.C., Sipe, N.G., Gleeson, B.J., 2006. Performance-Based Planning. J Plan Educ Res 25, 396–409. https://doi.org/10.1177/0739456X05283450
  5. Barton, D.N., Ring, I., Rusch, G.M., 2017. Policy Mixes: Aligning instruments for biodiversity conservation and ecosystem service provision. Environmental Policy and Governance 27, 397–403. https://doi.org/10.1002/eet.1779
  6. Becciu, G., Ghia, M., Mambretti, S., 2018. A century of works on river seveso: From unregulated development to basin reclamation. International Journal of Environmental Impacts: Management, Mitigation and Recovery 1, 461–472. https://doi.org/10.2495/ei-v1-n4-461-472
  7. Bignami, D.F., Rosso, R., Sanfilippo, U., 2019. Flood Proofing in Urban Areas, Flood Proofing in Urban Areas. Springer International Publishing. https://doi.org/10.1007/978-3-030-05934-7
  8. Brattebo, B.O., Booth, D.B., 2003. Long-term stormwater quantity and quality performance of permeable pavement systems. Water Res 37, 4369–4376. https://doi.org/10.1016/S0043-1354(03)00410-X
  9. Bulkeley, H., Kern, K., 2006. Local Government and the Governing of Climate Change in Germany and the UK. Urban Studies 43, 2237–2259. https://doi.org/10.1080/00420980600936491
  10. Butler, D., Davies, J.W., 2011. Urban Drainage, 2nd ed. Spon Press, London.
  11. Carter, T., Fowler, L., 2008. Establishing green roof infrastructure through environmental policy instruments. Environ Manage 42, 151–164. https://doi.org/10.1007/s00267-008-9095-5
  12. Chan, F.K.S., Griffiths, J.A., Higgitt, D., Xu, S., Zhu, F., Tang, Y.T., Xu, Y., Thorne, C.R., 2018. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land use policy 76, 772–778. https://doi.org/10.1016/J.LANDUSEPOL.2018.03.005
  13. Christiansen, L., Martinez, G., 2018. Adaptation metrics: Perspectives on measuring, aggregating and comparing adaptation results, in: Christiansen, L., Martinez, G., Naswa, P. (Eds.), Adaptation Metrics: Perspectives on Measuring, Aggregating and Comparing Adaptation Results. UNEP DTU Partnership, Copenhagen, pp. 7–13.
  14. Chui, T.F.M., Liu, X., Zhan, W., 2016. Assessing cost-effectiveness of specific LID practice designs in response to large storm events. J Hydrol (Amst) 533, 353–364. https://doi.org/10.1016/j.jhydrol.2015.12.011
  15. Cortinovis, C., Geneletti, D., 2020. A performance-based planning approach integrating supply and demand of urban ecosystem services. Landsc Urban Plan 201, 103842. https://doi.org/10.1016/j.landurbplan.2020.103842
  16. Cortinovis, C., Geneletti, D., 2018. Mapping and assessing ecosystem services to support urban planning: A case study on brownfield regeneration in Trento, Italy. One Ecosystem 3. https://doi.org/10.3897/oneeco.3.e25477
  17. Davies, C., Lafortezza, R., 2019. Transitional path to the adoption of nature-based solutions. Land use policy 80, 406–409. https://doi.org/10.1016/j.landusepol.2018.09.020
  18. Eckart, K., McPhee, Z., Bolisetti, T., 2017. Performance and implementation of low impact development - A review. Sci Total Environ 607–608, 413–432. https://doi.org/10.1016/j.scitotenv.2017.06.254
  19. Eggermont, H., Balian, E., Azevedo, J.M.N., Beumer, V., Brodin, T., Claudet, J., Fady, B., Grube, M., Keune, H., Lamarque, P., Reuter, K., Smith, M., Van Ham, C., Weisser, W.W., Le Roux, X., 2015. Nature-based solutions: New influence for environmental management and research in Europe. GAIA - Ecological Perspectives for Science and Society. https://doi.org/10.14512/gaia.24.4.9
  20. ERSAF, 2017. Progetto strategico di sottobacino del torrente Seveso.
  21. European Commission (EC), 2022. Nature-based Solutions and the Challenges of Water: Accelerating the transition to more sustainable cities. Luxembourg.
  22. European Commission (EC), 2020. Nature-based solutions for flood mitigation and coastal resilience: analysis of EU-funded projects. Bruxelles.
  23. European Commission (EC), 2015. Towards an EU Research and Innovation policy agenda for Nature-Based Solutions and Re-Naturing Cities. Publications Office of the European Union, Luxembourg. https://doi.org/https://doi.org/10.2777/765301
  24. European Commission (EC), 2013. Green Infrastructure (GI) — Enhancing Europe’s Natural Capital.
  25. European Commission (EC), Directorate-General for Research and Innovation, 2021. Evaluating the Impacts of Nature-based Solutions: A summary for Policy Makers. Luxembourg. https://doi.org/10.2777/2219
  26. European Commission (EC), Directorate-General for Research and Innovation, Naumann, S., Burgos Cuevas, N., Davies, C., Bradley, S., Mahmoud, I.H., Arlati, A., 2023. Harnessing the power of collaboration for nature-based solutions. https://doi.org/10.2777/954370
  27. Falconer, R.H., Cobby, D., Smyth, P., Astle, G., Dent, J., Golding, B., 2009. Pluvial flooding: New approaches in flood warning, mapping and risk management. J Flood Risk Manag 2, 198–208. https://doi.org/10.1111/J.1753-318X.2009.01034.X
  28. Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.L., Mikkelsen, P.S., Rivard, G., Uhl, M., Dagenais, D., Viklander, M., 2015. SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water J 12, 525–542. https://doi.org/10.1080/1573062X.2014.916314
  29. Frantzeskaki, N., McPhearson, T., Collier, M.J., Kendal, D., Bulkeley, H., Dumitru, A., Walsh, C., Noble, K., van Wyk, E., Ordóñez, C., Oke, C., Pintér, L., 2019. Nature-Based Solutions for Urban Climate Change Adaptation: Linking Science, Policy, and Practice Communities for Evidence-Based Decision-Making. Bioscience 69, 455–466. https://doi.org/10.1093/biosci/biz042
  30. Fratini, C.F., Geldof, G.D., Kluck, J., Mikkelsen, P.S., 2012. Three Points Approach (3PA) for urban flood risk management: A tool to support climate change adaptation through transdisciplinarity and multifunctionality. Urban Water J 9, 317–331. https://doi.org/10.1080/1573062X.2012.668913
  31. Frew, T., Baker, D., Donehue, P., 2016. Performance based planning in Queensland: A case of unintended plan-making outcomes. Land use policy 50, 239–251. https://doi.org/10.1016/j.landusepol.2015.10.007
  32. Frontori, I., 2016. L’acqua nei sistemi difensivi delle città romane: alcuni casi in Lombardia. Gilgames. Giornale Interdisciplinare di Lettere e Linguistica, Geografia, Arte e Archeologia, Musica e Spettacolo I, 96–113.
  33. Hammond, M.J., Chen, A.S., Djordjević, S., Butler, D., Mark, O., 2015. Urban flood impact assessment: A state-of-the-art review. Urban Water J 12, 14–29. https://doi.org/10.1080/1573062X.2013.857421
  34. Hansen, R., Pauleit, S., 2014. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for Urban Areas. Ambio 43, 516–529. https://doi.org/10.1007/s13280-014-0510-2
  35. Hansen, R., Rall, E.L., Rolf, W., Pauleit, S., 2017. Urban Green Infrastructure Planning: A Guide for Practitioners.
  36. Hassani, M.R., Niksokhan, M.H., Mousavi Janbehsarayi, S.F., Nikoo, M.R., 2023. Multi-objective robust decision-making for LIDs implementation under climatic change. J Hydrol (Amst) 617, 128954. https://doi.org/10.1016/J.JHYDROL.2022.128954
  37. Jha, A.K., Bloch, R., Lamond, J., 2012. Cities and Flooding. The World Bank. https://doi.org/10.1596/978-0-8213-8866-2
  38. Ji, S., Qiuwen, Z., 2015. A GIS-based Subcatchments Division Approach for SWMM. The Open Civil Engineering Journal 9, 515–521. https://doi.org/10.2174/1874149501509010515
  39. Lempert, R.J., 2019. Robust Decision Making (RDM), in: Decision Making under Deep Uncertainty. Springer International Publishing, Cham, pp. 23–51. https://doi.org/10.1007/978-3-030-05252-2_2
  40. Lennon, M., Scott, M., 2014. Delivering ecosystems services via spatial planning: reviewing the possibilities and implications of a green infrastructure approach. Town Planning Review 85, 563–587. https://doi.org/10.3828/tpr.2014.35
  41. Li, Q., Wang, F., Yu, Y., Huang, Z., Li, M., Guan, Y., 2018. Comprehensive performance evaluation of LID practices for the sponge city construction: A case study in Guangxi, China. https://doi.org/10.1016/j.jenvman.2018.10.024
  42. Madrazo-Uribeetxebarria, E., Garmendia Antín, M., Almandoz Berrondo, J., Andrés-Doménech, I., 2022. Modelling Runoff from Permeable Pavements: A Link to the Curve Number Method. Water (Basel) 15, 160. https://doi.org/10.3390/w15010160
  43. Mccutcheon, M., Wride, D., 2013. Shades of Green: Using SWMM LID Controls to Simulate Green Infrastructure, in: Journal of Water Management Modeling. pp. 246–261. https://doi.org/10.14796/JWMM.R246-15
  44. McVittie, A., Cole, L., Wreford, A., Sgobbi, A., Yordi, B., 2018. Ecosystem-based solutions for disaster risk reduction: Lessons from European applications of ecosystem-based adaptation measures. International Journal of Disaster Risk Reduction 32, 42–54. https://doi.org/10.1016/j.ijdrr.2017.12.014
  45. Mei, C., Liu, J., Wang, H., Yang, Z., Ding, X., Shao, W., 2018. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Science of The Total Environment 639, 1394–1407. https://doi.org/10.1016/J.SCITOTENV.2018.05.199
  46. Novotny, V., Ahern, J., Brown, P., 2010. Water Centric Sustainable Communities. Planning, Retrofitting, and Building the Next Urban Environment. John Wiley & Sons, Hoboken, New Jersey.
  47. Pappalardo, V., La Rosa, D., 2020. Policies for sustainable drainage systems in urban contexts within performance-based planning approaches. Sustain Cities Soc 52, 101830. https://doi.org/10.1016/j.scs.2019.101830
  48. Pappalardo, V., La Rosa, D., Campisano, A., La Greca, P., 2017. The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study. Ecosyst Serv 26, 345–354. https://doi.org/10.1016/j.ecoser.2017.04.015
  49. Paul, M.J., Meyer, J.L., 2008. Streams in the urban landscape, in: Urban Ecology: An International Perspective on the Interaction Between Humans and Nature. Springer US, pp. 207–231. https://doi.org/10.1007/978-0-387-73412-5_12
  50. Randall, M., Støvring, J., Henrichs, M., Bergen Jensen, M., 2020. Comparison of SWMM evaporation and discharge to in-field observations from lined permeable pavements. Urban Water J 491–502. https://doi.org/10.1080/1573062X.2020.1776737
  51. Ronchi, S., Arcidiacono, A., Pogliani, L., 2019. Integrating green infrastructure into spatial planning regulations to improve the performance of urban ecosystems. Insights from an Italian case study. https://doi.org/10.1016/j.scs.2019.101907
  52. Rosenzweig, B.R., McPhillips, L., Chang, H., Cheng, C., Welty, C., Matsler, M., Iwaniec, D., Davidson, C.I., 2018. Pluvial flood risk and opportunities for resilience. Wiley Interdisciplinary Reviews: Water 5. https://doi.org/10.1002/WAT2.1302
  53. Rossman, L.A., 2015. EPA Storm Water Management Model. User’s Manual.
  54. Salata, S., Ronchi, S., Giaimo, C., Arcidiacono, A., Pantaloni, G.G., 2021. Performance-Based Planning to Reduce Flooding Vulnerability Insights from the Case of Turin (North-West Italy). https://doi.org/10.3390/su13105697
  55. Schelfaut, K., Pannemans, B., van der Craats, I., Krywkow, J., Mysiak, J., Cools, J., 2011. Bringing flood resilience into practice: the FREEMAN project. Environ Sci Policy 14, 825–833. https://doi.org/10.1016/j.envsci.2011.02.009
  56. Schilling, J., Tränckner, J., 2022. Generate_SWMM_inp: An Open-Source QGIS Plugin to Import and Export Model Input Files for SWMM. Water (Basel) 14, 2262. https://doi.org/10.3390/w14142262
  57. Seddon, N., Chausson, A., Berry, P., Girardin, C.A.J., Smith, A., Turner, B., 2020. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2019.0120
  58. Shen, J., Zhang, Q., 2014. Parameter Estimation Method for SWMM under the Condition of Incomplete Information Based on GIS and RS. EJGE 20, 6095–6108.
  59. Stovin, V., 2010. The potential of green roofs to manage urban stormwater. Water and Environment Journal 24, 192–199. https://doi.org/10.1111/j.1747-6593.2009.00174.x
  60. Sutton-Grier, A.E., Wowk, K., Bamford, H., 2015. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ Sci Policy 51, 137–148. https://doi.org/10.1016/J.ENVSCI.2015.04.006
  61. United States Environmental Protection Agency (USEPA), 2010. Green Infrastructure Case Studies: Municipal Policies for Managing Stormwater with Green Infrastructure.
  62. USDA, 1989. Runoff Curve Number Computations.
  63. Voinov, A., Bousquet, F., 2010. Modelling with stakeholders. Environmental Modelling & Software 25, 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007
  64. Wilby, R.L., Keenan, R., 2012. Adapting to flood risk under climate change. Prog Phys Geogr 36, 348–378. https://doi.org/10.1177/0309133312438908/FORMAT/EPUB
  65. Woods Ballard, B., Wilson, S., Udale-Clarke, H., Illman, S., Ashley, R., Kellagher, R., 2015. The SuDS Manual. London.
  66. Zhang, K., Chui, T.F.M., 2018. A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.11.281
  67. Zoppou, C., 2001. Review of urban storm water models. Environmental Modelling & Software 16, 195–231. https://doi.org/10.1016/S1364-8152(00)00084-0