No. 2 (2023): Ecosystem-based Planning. The contribution of ecosystem services to Urban and Regional Planning innovation
Ricerche

Mapping the vulnerability of urban areas in relation to urban heat island by combining satellite and ecosystem service data: a case study in Udine (Italy)

Published 2024-05-07

Keywords

  • Land Surface Temperature,
  • Green Infrastructure,
  • Ecosystem Service Assessment,
  • Ecosystem Service Flows,
  • Remote Sensing

How to Cite

Longato, D. ., & Maragno, D. (2024). Mapping the vulnerability of urban areas in relation to urban heat island by combining satellite and ecosystem service data: a case study in Udine (Italy). Contesti. Città, Territori, Progetti, (2), 128–149. Retrieved from https://oajournals.fupress.net/index.php/contesti/article/view/14816

Abstract

Urban environments tend to experience higher temperatures than their rural surroundings, especially during heatwaves. This phenomenon is called urban heat island (UHI) and is usually more pronounced at night. Measurements of land-surface temperature (LST) are important to understand and monitor UHI and to support the planning of actions to mitigate heat stress. They are widely used to identify more vulnerable areas in cities. This study presents a method to spatially explicit assess the vulnerability of urban areas in relation to UHI that combines measurement of LST and an assessment of the cooling spatial effects provided by ecosystems. The method is applied in the city of Udine (Italy). Results show the urban areas that are potentially more prone to suffer from more intense UHI effects because of characterized by higher LST while not benefitting from any cooling effect by ecosystems. The method is then discussed in the light of its advantages, limitations, and future improvements.

Downloads

Download data is not yet available.

References

  1. Aram F., Higueras García E., Solgi E., Mansournia S. 2019, Urban green space cooling effect in cities, «Heliyon», vol. 5, n. 4, e01339. https://doi.org/10.1016/j.heliyon.2019.e01339
  2. Azevedo J.A., Chapman L., Muller C.L. 2016, Quantifying the daytime and night-time urban heat Island in Birmingham, UK: A comparison of satellite derived land surface temperature and high resolution air temperature observations «Remote Sensing», vol. 8, n. 2. https://doi.org/10.3390/rs8020153
  3. Ballester J., Quijal-Zamorano M., Méndez Turrubiates R.F., et al. 2023, Heat-related mortality in Europe during the summer of 2022, «Nature Medicine», vol. 29, 1857–1866. https://doi.org/10.1038/s41591-023-02419-z
  4. Bird D.N., Banzhaf E., Knopp J., Wu W., Jones L. 2022, Combining Spatial and Temporal Data to Create a Fine-Resolution Daily Urban Air Temperature Product from Remote Sensing Land Surface Temperature (LST) Data, «Atmosphere», vol. 13, 1152. https://doi.org/10.3390/atmos13071152
  5. Burkhard B., Kandziora M., Hou Y., Müller F. 2014, Ecosystem Service Potentials, Flows and Demands – Concepts for Spatial Localisation, Indication and Quantification, «Landscape Online», vol. 34, 1-32. DOI 10.3097/LO.201434
  6. do Nascimento A.C.L., Galvani E., Gobo J.P.A., Wollmann C.A. 2022, Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo, Brazil, «Atmosphere», vol. 13, 491. https://doi.org/10.3390/atmos13030491
  7. Dworczyk C., Burkhard B. 2021, Conceptualising the demand for ecosystem services – an adapted spatial-structural approach, «One Ecosystem», vol. 6, e65966. https://doi.org/10.3897/oneeco.6.e65966
  8. Gallay I., Olah B., Murtinová V., Gallayová Z., 2023, Quantification of the Cooling Effect and Cooling Distance of Urban Green Spaces Based on Their Vegetation Structure and Size as a Basis for Management Tools for Mitigating Urban Climate, «Sustainability», vol. 15, 3705. https://doi.org/10.3390/su15043705
  9. Geneletti D., Zardo L., Cortinovis C. 2016, Promoting nature- based solutions for climate adaptation in cities through impact assessment, in D. Geneletti (ed.) handbook on biodiversity and ecosystem services in impact assessment, Edward Elgar Publishing, Cheltenham, UK – Northampton, MA, USA, 428-452.
  10. Geneletti D., Cortinovis C., Orta-Ortiz M.S., Kato-Huerta J., Longato D., Falco E. 2022, Mainstreaming Nature-Based Solutions in Cities Through Performance-Based Planning: A Case Study in Trento, Italy, in I. H. Mahmoud, E. Morello, F.L. de Oliveira, D. Geneletti (eds.), Nature-based Solutions for Sustainable Urban Planning. Greening Cities, Shaping Cities, Springer, 19–46.
  11. Fu j., Dupre K., Tavares S., King D., Banhalmi-Zakar Z. 2022, Optimized greenery configuration to mitigate urban heat: A decade systematic review, «Frontiers of Architectural Research», vol. 11, 466-491. https://doi.org/10.1016/j.foar.2021.12.005
  12. Kim J., Lee D.-K., Brown R.B., Kim S., Kim J.-H., Sung S. 2022, The effect of extremely low sky view factor on land surface temperatures in urban residential areas, «Sustainable Cities and Society», vol. 80, 103799. https://doi.org/10.1016/j.scs.2022.103799
  13. Langemeyer J., Wedgwood D., McPhearson T., Baró F., Madsen A.L., Barton D.N. 2020, Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona, «Science of the Total Environment», vol. 707, 135487. https://doi.org/10.1016/j.scitotenv.2019.135487
  14. Longato D., Cortinovis C., Albert C., Geneletti D. 2021, Practical applications of ecosystem services in spatial planning: Lessons learned from a systematic literature review, «Environmental Science and Policy», vol. 119, 72–84. https://doi.org/10.1016/j.envsci.2021.02.001
  15. Longato D., Cortinovis C., Balzan M., Geneletti D. 2023. A method to prioritize and allocate nature-based solutions in urban areas based on ecosystem service demand, «Landscape and Urban Planning», vol. 235, 104743. https://doi.org/10.1016/j.landurbplan.2023.104743
  16. Naserikia M., Hart M.A., Nazarian N. et al. 2022, Background climate modulates the impact of land cover on urban surface temperature, «Sci Rep», vol. 12, 15433. https://doi.org/10.1038/s41598-022-19431-x
  17. Park C.Y., Park Y.S., Kim H.G., Yun S.H., Kim C.-K. 2021, Quantifying and mapping cooling services of multiple ecosystems, «Sustainable Cities and Society», vol. 73, 103123. https://doi.org/10.1016/j.scs.2021.103123
  18. Parker D.E. 2010, Urban heat island effects on estimates of observed climate change, «Wiley Interdisciplinary Reviews: Climate Change», vol. 1, n. 1, 123–133. https://doi.org/10.1002/wcc.21
  19. Reiners P., Sobrino J., Kuenzer C. 2023, Satellite-Derived Land Surface Temperature Dynamics in the Context of Global Change—A Review, «Remote Sensing», vol. 15, 1857. https://doi.org/10.3390/rs15071857
  20. Spronken-Smith R.A., Oke T.R. 1999, Scale modelling of nocturnal cooling in urban parks. «Bound. Layer Meteorol. », vol. 93, 287–312.
  21. Tang L., Zhang Q., Fan Y., Liu H., Fan Z. 2023, Exploring the impacts of greenspace spatial patterns on land surface temperature across different urban functional zones: A case study in Wuhan metropolitan area, China, «Ecological Indicators», vol. 146, 109787. https://doi.org/10.1016/j.ecolind.2022.109787
  22. Tieskens K.F., Smith I.A., Jimenez R.B., Hutyra L.R., Fabian M.P. 2022, Mapping the gaps between cooling benefits of urban greenspace and population heat vulnerability, «Science of the Total Environment», vol. 845, 157283. https://doi.org/10.1016/j.scitotenv.2022.157283
  23. Vaz Monteiro M., Doick K.J., Handley P., Peace A. 2016, The impact of greenspace size on the extent of local nocturnal air temperature cooling in London, «Urban Forestry & Urban Greening», vol. 16, 160–169. https://doi.org/10.1016/j.ufug.2016.02.008
  24. Venter Z.S., Barton D.N., Martinez-Izquierdo L., Langemeyer J., Baró F., McPhearson T. 2021, Interactive spatial planning of urban green infrastructure – Retrofitting green roofs where ecosystem services are most needed in Oslo, «Ecosystem Services», vol. 50. https://doi.org/10.1016/j.ecoser.2021.101314
  25. Walawender J.P., Szymanowski M., Hajto M.J., et al. 2014, Land Surface Temperature Patterns in the Urban Agglomeration of Krakow (Poland) Derived from Landsat-7/ETM+ Data, «Pure Appl. Geophys.», vol. 171, 913–940. https://doi.org/10.1007/s00024-013-0685-7
  26. Wei X., Wang X.-J. 2022, Analyzing the Spatial Distribution of LST and Its Relationship With Underlying Surfaces in Different Months by Classification and Intersection, «Front. Environ. Sci.», vol. 10, 872282. doi: 10.3389/fenvs.2022.872282
  27. Xu Z., Zhao S. 2023, Scale dependence of urban green space cooling efficiency: A case study in Beijing metropolitan area, «Science of The Total Environment», vol. 898, 165563. https://doi.org/10.1016/j.scitotenv.2023.165563
  28. Zardo L., Geneletti D., Pérez-Soba M., Van Eupen M. 2017, Estimating the cooling capacity of green infrastructures to support urban planning, «Ecosystem Services», vol. 26, 225–235. https://doi.org/10.1016/j.ecoser.2017.06.016
  29. Zhou Y., Feng Z., Xu K., Wu K., Gao H., Liu P. 2023, Ecosystem Service Flow Perspective of Urban Green Land: Spatial Simulation and Driving Factors of Cooling Service Flow, «Land», vol. 12, 1527. https://doi.org/10.3390/land12081527
  30. Ziter C.D., Pedersen E.J., Kucharik C.J., Turner M.G. 2019, Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer, «PNAS», vol. 116, n. 15, 7575-7580. https://doi.org/10.1073/pnas.1817561116
  31. ARPA FVG 2023, Il Clima del Friuli Venezia Giulia, <https://www.osmer.fvg.it/clima/clima_fvg/02_documenti_descrittivi,_report_e_approfondimenti/01_Il_clima_del_Friuli_Venezia_Giulia/clima_fvg-divulgativo.pdf> (10/2023)
  32. European Topic Centre on Biological Diversity, A crosswalk between EUNIS habitats Classification and Corine Land Cover, <https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1/documentation/eunis-clc.pdf> (10/2023)