Just Accepted Manuscripts
Articles

Analysis of residential buildings: design and implementation of a database

Lorenzo Stefanini
University of Bologna
Giorgia Predari
University of Bologna

Published 2025-12-04

Keywords

  • Database,
  • Data-driven approach,
  • Residential building,
  • Building performance

Abstract

Preliminary investigations and analyses for building assets’ renovation require considerable time and resources. Being able to assess, in advance and on a large scale, how to address these assets would allow reducing the issues to existing buildings as a priority. This research project aims to demonstrate how a data-driven approach can help make informed decisions and better allocate available resources. Starting with a sample of 468 buildings constructed in the city of Bologna between 1945 and 1965, the study led to the creation of a comprehensive database consisting of 468 records and 211 fields, grouped into 16 macro-categories. These fields represent the catalogued characteristics for each building; 95 of them were directly surveyed, and 116 were derived from the processing performed on the first 95 attributes. Each building is associated with various types of information to provide an overall framework (e.g., technical, typological, morphological, etc.). At the end of the database development, queries were performed to assess both the construction characteristics of the buildings’ sample and the qualitative performance in terms of structural, energy, and planimetric distribution. The results provide an indication of the building and show how in-depth analyses can serve as the foundation for a decision support system (DSS).

References

  1. 1. Gonella G (2003) Il discorso delle 27 libertà, 1st ed. Gemma Editco. Verona.
  2. 2. ISTAT (2021) Abitazioni in edifici residenziali per epoca di costruzione e stato di occupazione - regioni e province. http://dati-censimentopopolazione.istat.it/Index.aspx?DataSetCode=DICA_EDIFICIRES. Accessed 17/12/2024.
  3. 3. Di Biagi P (2001) La grande ricostruzione: il piano Ina-Casa e l’Italia degli anni cinquanta. Donzelli, Roma.
  4. 4. Treves A (2001) Le nascite e la politica nell’Italia del Novecento. LED-Ed. universitarie di lettere, economia, diritto, Milano.
  5. 5. Hrasnica M, Medic S (2021) Seismic Response of Unreinforced Masonry Buildings from 1950’s. In: 1st Croatian Conference on Earthquake Engineering. University of Zagreb Faculty of Civil Engineering, pp 1137–1148.
  6. 6. Siano R, Fatnassi A, Maio FVD, Basso P, Cademartori M (2023) Seismic vulnerability assessment and retrofitting design of Italian public buildings. Procedia Structural Integrity 44:1038–1044. https://doi.org/10.1016/j.prostr.2023.01.134
  7. 7. Ma Z, Cooper P, Daly D, Ledo L (2012) Existing building retrofits: Methodology and state-of-the-art. Energy and Buildings 55:889–902. https://doi.org/10.1016/j.enbuild.2012.08.018
  8. 8. Loga T, Stein B, Diefenbach N (2016) TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy and Buildings 132:4–12. https://doi.org/10.1016/j.enbuild.2016.06.094
  9. 9. Manfredini A (1998) Cenni sui caratteri distributivi dei tipi razionalisti della residenza. In: Zaffagnini M. Architettura a misura d’uomo. Pitagora, Bologna, pp 163–198
  10. 10. Mathew PA, Dunn LN, Sohn MD, Mercado A, Custudio C, Walter T (2015) Big-data for building energy performance: Lessons from assembling a very large national database of building energy use. Applied Energy 140:85–93. https://doi.org/10.1016/j.apenergy.2014.11.042
  11. 11. Geyer P, Schlüter A, Cisar S (2017) Application of clustering for the development of retrofit strategies for large building stocks. Advanced Engineering Informatics 31:32–47. https://doi.org/10.1016/j.aei.2016.02.001
  12. 12. Uva G, Leggieri V, Mastrodonato G (2021) An Approach for Tackling the Risk of the Residential Building Stocks at the Urban Scale Exploiting Spatial and Typological Archive Data. In: La Rosa D, Privitera R (eds) Innovation in Urban and Regional Planning. Springer International Publishing, Cham, pp 181–188
  13. 13. Zuccaro G, Dolce M, De Gregorio D, Speranza E, Moroni C (2015) La scheda CARTIS per la caratterizzazione tipologico-strutturale dei comparti urbani costituiti da edifici ordinari. Valutazione dell’esposizione in analisi di rischio sismico. In: 34° Convegno Nazionale GNGTS. Trieste
  14. 14. Krapf S, Mayer K, Fischer M (2023) Points for energy renovation (PointER): A point cloud dataset of a million buildings linked to energy features. Scientific Data 10:639. https://doi.org/10.1038/s41597-023-02544-x
  15. 15. Poux F, Billen R, Kasprzyk J-P, Lefebvre P-H, Hallot P (2020) A Built Heritage Information System Based on Point Cloud Data: HIS-PC. International Journal of Geo-Information 9:588. https://doi.org/10.3390/ijgi9100588
  16. 16. Ministero della sanità (1896) Istruzioni Ministeriali 20 giugno 1896, compilazione dei Regolamenti locali sull’igiene del suolo e dell’abitato.
  17. 17. Ministero per i lavori pubblici (1939) Regio decreto 16 novembre 1939 n.2229, Norme per l’esecuzione delle opere in conglomerato cementizio semplice od armato.
  18. 18. Ministero dei lavori pubblici (1939) Regio decreto 16 novembre 1939 n.2228, Norme per l’accettazione dei leganti idraulici.
  19. 19. Ministero dei lavori pubblici (1937) Regio decreto 22 novembre 1937 n.2105, Norme tecniche ed igieniche per le riparazioni, ricostruzioni e nuove costruzioni degli edifici pubblici e privati nei comuni o frazioni di comune dichiarati zone sismiche.
  20. 20. Ministero dei lavori pubblici (1949) Legge 2 luglio 1949, n.408, Disposizioni per l’incremento delle costruzioni edilizie.
  21. 21. Piano incremento occupazione operaia (1949) 1. Suggerimenti, norme e schemi per l’elaborazione e presentazione dei progetti, bandi dei concorsi. F. Damasso, Roma.
  22. 22. Colombo G (1877) Il manuale dell’ingegnere. Hoepli. Milano.
  23. 23. Gal M, Rubinfeld DL (2018) Data Standardization. SSRN Journal. 10.2139 https://doi.org/10.2139/ssrn.3326377
  24. 24. Stefanini L, Predari G (2024) Building Characteristics of the Residential Asset in Bologna After World War II. Proceedings of the 11th International Conference of Ar.Tec. (Scientific Society of Architectural Engineering) Colloqui.AT.e 2024, Palermo, pp 692–704 https://doi.org/10.1007/978-3-031-71863-2_43
  25. 25. Comune di Bologna (2024) Open Data Bologna https://opendata.comune.bologna.it/explore/dataset/rifter_edif_pl/information/. Accessed 17/12/2024.
  26. 26. ACCA software S.p.A. Termus-G https://www.acca.it/calcolo-trasmittanza-diagramma-glaser-condensa version 42.00I
  27. 27. Betti G, Tartarini F, Nguyen C, Schiavon S (2024) CBE Clima Tool: A free and open-source web application for climate analysis tailored to sustainable building design. Build Simulation 17:493–508. https://doi.org/10.1007/s12273-023-1090-5
  28. 28. Servizio Geologico, Sismico e dei Suoli della Regione Emilia-Romagna Banca dati delle prove geognostiche della Regione Emilia-Romagna https://ambiente.regione.emilia-romagna.it/it/geologia/servizi-e-strumenti/cartografie-webgis/prove-geognostiche-e-geotecniche-1 Accessed 17/12/2024.
  29. 29. Di Biase C (2009) Il degrado del calcestruzzo nell’architettura del Novecento. Maggioli, Santarcangelo di Romagna , Rimini.
  30. 30. Corrado V, Ballarini I, Corgnati SP (2011) Building Typology Brochure – Italy. Fascicolo sulla Tipologia Edilizia Italiana. Politecnico di Torino, Torino