Just Accepted Manuscripts
Articles

First results using Digital Image Correlation for deformation field measurements in laboratory tests on Textile Reinforced Mortar (TRM)-strengthened masonry panels

Gianluca Maracchini
Università degli Studi di Trento
Gianluca Chiappini
Università E-campus
Jacopo Donnini
Università Politecnica delle Marche
Enrico Quagliarini
Università Politecnica delle Marche
Valeria Corinaldesi
Università Politecnica delle Marche
Stefano Lenci
Università Politecnica delle Marche
Francesco Monni
Università Politecnica delle Marche

Published 2026-01-29

Keywords

  • DIC,
  • TRM,
  • masonry,
  • laboratory test,
  • diagonal compression test,
  • shear modulus
  • ...More
    Less

Abstract

The Digital Image Correlation (DIC) technique is a non-contact, full-field optical method and a non-destructive evaluation approach that enables the measurement of displacements and strain fields across an entire surface during experimental tests. This technique provides high-resolution data, enabling the measurement of global strain, the detection of localized strain concentrations and crack initiation, and monitoring the evolution of dominant damage mechanisms. DIC’s ability to capture both in-plane and out-of-plane displacements makes it a powerful tool for detailed structural assessment.  

This paper presents preliminary results on the application of the DIC technique during diagonal compression tests of 1.2 x 1.2 x 0.25 m³ unstrengthened and strengthened clay brick masonry panels. The strengthening system consists of two Textile Reinforced Mortar (TRM) layers applied on both wall sides and connected by helical stainless-steel connectors. Glass fiber bidirectional fabrics are used as TRM reinforcing meshes, embedded in a 30 mm thick lime-based mortar. A couple of CMOS cameras were used to apply the stereo-DIC algorithm and record the three-dimensional displacement field during test execution. The displacement field obtained through DIC has been compared and validated with that obtained through the more common analog Linear Variable Differential Transformers (LVDT). The comparison highlighted the benefits and weaknesses of the DIC technique.  

References

  1. [1] F. Clementi, E. Quagliarini, F. Monni, E. Giordano, and S. Lenci, “Cultural Heritage and Earthquake: The Case Study of ‘Santa Maria Della Carità’ in Ascoli Piceno,” Open Civ. Eng. J., vol. 11, no. 1, pp. 1079–1105, Dec. 2017, doi: 10.2174/1874149501711011079.
  2. [2] M. Schiavoni, E. Giordano, F. Roscini, and F. Clementi, “Advanced numerical insights for an effective seismic assessment of historical masonry aggregates,” Eng. Struct., vol. 285, p. 115997, Jun. 2023, doi: 10.1016/j.engstruct.2023.115997.
  3. [3] G. P. Salachoris, G. Standoli, M. Betti, G. Milani, and F. Clementi, “Evolutionary numerical model for cultural heritage structures via genetic algorithms: a case study in central Italy,” Bull. Earthq. Eng., Jan. 2023, doi: 10.1007/s10518-023-01615-z.
  4. [4] J. Thamboo, T. Zahra, M. Asad, L. Silva, and J. Gimhani, “Analytical model for CFRP confined masonry columns subjected to monotonic and cyclic compression,” Compos. Struct., vol. 292, no. September 2021, p. 115696, 2022, doi: 10.1016/j.compstruct.2022.115696.
  5. [5] J. Jing, C. Zhou, and C. Lin, “Compressive behavior of brick masonry columns confined with composites embedded in the horizontal mortar joint,” Structures, vol. 57, no. March, p. 105120, 2023, doi: 10.1016/j.istruc.2023.105120.
  6. [6] J. Wang, C. Wan, L. Shen, Q. Zeng, and X. Ji, “Compressive behavior of masonry columns confined with basalt textile-reinforced concrete,” J. Build. Eng., vol. 75, no. June, p. 107019, 2023, doi: 10.1016/j.jobe.2023.107019.
  7. [7] E. Quagliarini, F. Monni, F. Greco, and S. Lenci, “Flexible repointing of historical facingmasonry column-type specimens with basalt fibers: A first insight,” J. Cult. Herit., vol. 24, pp. 165–170, 2017, doi: 10.1016/j.culher.2016.11.003.
  8. [8] A. Keshmiry, S. Hassani, U. Dackermann, and J. Li, “Assessment, repair, and retrofitting of masonry structures: A comprehensive review,” Constr. Build. Mater., vol. 442, p. 137380, Sep. 2024, doi: 10.1016/j.conbuildmat.2024.137380.
  9. [9] L. A. S. Kouris and T. C. Triantafillou, “State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM),” Constr. Build. Mater., vol. 188, pp. 1221– 1233, Nov. 2018, doi: 10.1016/j.conbuildmat.2018.08.039.
  10. [10] ASTM E 519-22, “Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages,” American Society for Testing Materials. 2022. doi: 10.1520/E0519.
  11. [11] P. Callaway, M. Gilbert, and C. C. Smith, “Influence of backfill on the capacity of masonry arch bridges,” Proc. Inst. Civ. Eng. - Bridg. Eng., vol. 165, no. 3, pp. 147–157, Sep. 2012, doi:
  12. 10.1680/bren.11.00038.
  13. [12] G. De Canio et al., “Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall,” Earthquakes Struct., vol. 10, no. 1, pp. 53–71, Jan. 2016, doi:
  14. 10.12989/eas.2016.10.1.053.
  15. [13] H. Schreier, J.-J. Orteu, and M. A. Sutton, Image Correlation for Shape, Motion and Deformation Measurements. Boston, MA: Springer US, 2009. doi: 10.1007/978-0-387-78747-
  16. 3.
  17. [14] N. McCormick and J. Lord, “Digital Image Correlation,” Mater. Today, vol. 13, no. 12, pp. 52–54, Dec. 2010, doi: 10.1016/S1369-7021(10)70235-2.
  18. [15] M. Badaloni, M. Rossi, G. Chiappini, P. Lava, and D. Debruyne, “Impact of Experimental Uncertainties on the Identification of Mechanical Material Properties using DIC,” Exp. Mech., vol. 55, no. 8, pp. 1411–1426, Oct. 2015, doi: 10.1007/s11340-015-0039-8.
  19. [16] G. Chiappini, M. Sasso, T. Bellezze, and D. Amodio, “Thermo-structural analysis of components in ceramic material,” Procedia Struct. Integr., vol. 8, pp. 618–627, 2018, doi:
  20. 10.1016/j.prostr.2017.12.061.
  21. [17] F. Stazi et al., “Carbon nanofibers in polyurethane foams: Experimental evaluation of thermohygrometric and mechanical performance,” Polym. Test., vol. 67, pp. 234–245, May 2018, doi: 10.1016/j.polymertesting.2018.01.028.
  22. [18] M. Sasso, E. Mancini, G. Chiappini, F. Sarasini, and J. Tirillò, “Application of DIC to Static and Dynamic Testing of Agglomerated Cork Material,” Exp. Mech., vol. 58, no. 7, pp. 1017– 1033, Sep. 2018, doi: 10.1007/s11340-017-0369-9.
  23. [19] J. Donnini, G. Chiappini, G. Lancioni, and V. Corinaldesi, “Tensile behaviour of glass FRCM systems with fabrics’ overlap: Experimental results and numerical modeling,” Compos.
  24. Struct., vol. 212, pp. 398–411, Mar. 2019, doi: 10.1016/j.compstruct.2019.01.053.
  25. [20] B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for inplane displacement and strain measurement: a review,” Meas. Sci. Technol., vol. 20, no. 6, p. 062001, Jun. 2009, doi: 10.1088/0957-0233/20/6/062001.
  26. [21] A. Ozdemir, M. Sangirardi, M. Judd, and S. Acikgoz, “Evaluation of test procedures and correlations for the mechanical characterisation of brick masonry and its constituents,” Constr.
  27. Build. Mater., vol. 489, no. June, p. 142133, 2025, doi: 10.1016/j.conbuildmat.2025.142133.
  28. [22] I. Bello, F. Martínez-Abella, G. Wardeh, and B. González-Fonteboa, “Complete stress-strain analysis of masonry prisms under compressive loading-unloading cycles through digital image correlation,” Eng. Struct., vol. 298, no. October 2023, 2024, doi:
  29. 10.1016/j.engstruct.2023.117088.
  30. [23] A. Bilotta, F. Ceroni, G. P. Lignola, and A. Prota, “Use of DIC technique for investigating the behaviour of FRCM materials for strengthening masonry elements,” Compos. Part B Eng., vol. 129, pp. 251–270, 2017, doi: 10.1016/j.compositesb.2017.05.075.
  31. [24] J. Donnini, G. Lancioni, and V. Corinaldesi, “Failure modes in FRCM systems with dry and pre-impregnated carbon yarns: Experiments and modeling,” Compos. Part B Eng., vol. 140, no. October 2017, pp. 57–67, 2018, doi: 10.1016/j.compositesb.2017.12.024.
  32. [25] J. Donnini, S. Spagnuolo, and V. Corinaldesi, “A comparison between the use of FRP, FRCM and HPM for concrete confinement,” Compos. Part B Eng., vol. 160, no. December 2018, pp. 586–594, 2019, doi: 10.1016/j.compositesb.2018.12.111.
  33. [26] E. Giordano, M. G. Masciotta, F. Clementi, and B. Ghiassi, “Numerical prediction of the mechanical behavior of TRM composites and TRM-strengthened masonry panels,” Constr.
  34. Build. Mater., vol. 397, p. 132376, Sep. 2023, doi: 10.1016/j.conbuildmat.2023.132376.
  35. [27] N. Gattesco and I. Boem, “Out-of-plane behavior of reinforced masonry walls: Experimental and numerical study,” Compos. Part B Eng., vol. 128, pp. 39–52, 2017, doi:
  36. 10.1016/j.compositesb.2017.07.006.
  37. [28] EN 1015-11:2019, “Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar.” Ente Nazionale Italiano di Unificazione (UNI), 2019.
  38. [29] EN 12504-4:2021, “Testing concrete in structures - Part 4: Determination of ultrasonic pulse velocity.” 2021.
  39. [30] E. Quagliarini, S. Lenci, and M. Iorio, “Mechanical properties of adobe walls in a Roman Republican domus at Suasa,” J. Cult. Herit., vol. 11, no. 2, pp. 130–137, 2010, doi:
  40. 10.1016/j.culher.2009.01.006.
  41. [31] E. Quagliarini et al., “Experimental analysis of romanesque masonries made by tile and brick fragments found at the archaeological site of S. Maria in Portuno,” Int. J. Archit. Herit., vol. 8, no. 2, pp. 161–184, 2014, doi: 10.1080/15583058.2012.683132.
  42. [32] E. Quagliarini and G. Maracchini, “Experimental and FEM Investigation of Cob Walls under Compression,” Adv. Civ. Eng., vol. 2018, pp. 21–29, 2018, doi: 10.1155/2018/7027432.
  43. [33] D. Amodio, G. B. Broggiato, F. Campana, and G. M. Newaz, “Digital speckle correlation for strain measurement by image analysis,” Exp. Mech., vol. 43, no. 4, pp. 396–402, 2003, doi:
  44. 10.1177/0014485103434004.